Publications by authors named "Tatiana Spatola Rossi"

Cupriavidus necator is a facultative chemolithoautotrophic bacterium able to convert carbon dioxide into poly-3-hydroxybutyrate. This is highly promising as the conversion process allows the production of sustainable and biodegradable plastics. Poly-3-hydroxybutyrate accumulation is known to be induced by nutrient starvation, but information regarding the optimal stress conditions controlling the process is still heterogeneous and fragmentary.

View Article and Find Full Text PDF

Anaerobic digestion is a complex microbial process that mediates the transformation of organic waste into biogas. The performance and stability of anaerobic digesters relies on the structure and function of the microbial community. In this study, we asked whether the deterministic effect of wastewater composition outweighs the effect of reactor configuration on the structure and dynamics of anaerobic digester archaeal and bacterial communities.

View Article and Find Full Text PDF

Simultaneous stoichiometric expression of multiple genes plays a major part in modern research and biotechnology. Traditional methods for incorporating multiple transgenes (or "gene stacking") have drawbacks such as long time frames, uneven gene expression, gene silencing, and segregation derived from the use of multiple promoters. 2A self-cleaving peptides have emerged over the last two decades as a functional gene stacking method and have been used in plants for the co-expression of multiple genes under a single promoter.

View Article and Find Full Text PDF

Methane is a potent greenhouse gas, which has contributed to approximately a fifth of global warming since pre-industrial times. The agricultural sector produces significant methane emissions, especially from livestock, waste management and rice cultivation. Rice fields alone generate around 9% of total anthropogenic emissions.

View Article and Find Full Text PDF

Protein targeting is essential in eukaryotic cells to maintain cell function and organelle identity. Signal peptides are a major type of targeting sequences containing a tripartite structure, which is conserved across all domains in life. They are frequently included in recombinant protein design in plants to increase yields by directing them to the endoplasmic reticulum (ER) or apoplast.

View Article and Find Full Text PDF

Determining protein-protein interactions is vital for gaining knowledge on cellular and metabolic processes including enzyme complexes and metabolons. Förster resonance energy transfer with fluorescence lifetime imaging microscopy (FRET-FLIM) is an advanced imaging methodology that allows for the quantitative detection of protein-protein interactions. In this method, proteins of interest for interaction studies are fused to different fluorophores such as enhanced green fluorescent protein (eGFP; donor molecule) and monomeric red fluorescent protein (mRFP; acceptor molecule).

View Article and Find Full Text PDF

The plant hormone auxin is essential for plant growth and development, controlling both organ development and overall plant architecture. Auxin homeostasis is regulated by coordination of biosynthesis, transport, conjugation, sequestration/storage, and catabolism to optimize concentration-dependent growth responses and adaptive responses to temperature, water stress, herbivory, and pathogens. At present, the best defined pathway of auxin biosynthesis is the TAA/YUC route, in which the tryptophan aminotransferases TAA and TAR and YUCCA flavin-dependent monooxygenases produce the auxin indole-3-acetic acid from tryptophan.

View Article and Find Full Text PDF