Family GH1 glycosyl hydrolases are ubiquitous in prokaryotes and eukaryotes and are utilized in numerous industrial applications, including bioconversion of lignocelluloses. In this study, hyperacidophilic archaeon Cuniculiplasma divulgatum (S5T=JCM 30642T) was explored as a source of novel carbohydrate-active enzymes. The genome of C.
View Article and Find Full Text PDFProkaryotic transcription factors (TFs) regulate gene expression in response to small molecules, thus representing promising candidates as versatile small molecule-detecting biosensors valuable for synthetic biology applications. The engineering of such biosensors requires thorough in vitro and in vivo characterization of TF ligand response as well as detailed molecular structure information. In this work, we functionally and structurally characterize the Pca regulon regulatory protein (PcaR) transcription factor belonging to the IclR transcription factor family.
View Article and Find Full Text PDFThe survival of spp. as intracellular pathogens relies on the combined action of protein effectors delivered inside their eukaryotic hosts by the Dot/Icm (efective in rganelle rafficking/ntraellular ultiplication) type IVb secretion system. The specific repertoire of effector arsenals varies dramatically across over 60 known species of this genera with responsible for most cases of Legionnaires' disease in humans encoding over 360 Dot/Icm effectors.
View Article and Find Full Text PDFToxin-antitoxin (TA) systems are parasitic genetic elements found in almost all bacterial genomes. They are exchanged horizontally between cells and are typically poorly conserved across closely related strains and species. Here, we report the characterization of a tripartite TA system in the bacterial pathogen that is highly conserved across species genomes.
View Article and Find Full Text PDFFluorine forms the strongest single bond to carbon with the highest bond dissociation energy among natural products. However, fluoroacetate dehalogenases (FADs) have been shown to hydrolyze this bond in fluoroacetate under mild reaction conditions. Furthermore, two recent studies demonstrated that the FAD RPA1163 from Rhodopseudomonas palustris can also accept bulkier substrates.
View Article and Find Full Text PDFStrigolactones (SLs) regulate many aspects of plant development, but ambiguities remain about how this hormone is perceived because SL-complexed receptor structures do not exist. We find that when SL binds the Striga receptor, ShHTL5, a series of conformational changes relative to the unbound state occur, but these events are not sufficient for signalling. Ligand-complexed receptors, however, form internal tunnels that posit an explanation for how SL exits its receptor after hydrolysis.
View Article and Find Full Text PDFThe NleGs are the largest family of type 3 secreted effectors in attaching and effacing (A/E) pathogens, such as enterohemorrhagic Escherichia coli (EHEC), enteropathogenic E. coli, and Citrobacter rodentium. NleG effectors contain a conserved C-terminal U-box domain acting as a ubiquitin protein ligase and target host proteins via a variable N-terminal portion.
View Article and Find Full Text PDFAcetylated glucuronoxylan is one of the most common types of hemicellulose in nature. The structure is formed by a β-(1→4)-linked D-xylopyranosyl (Xyl) backbone that can be substituted with an acetyl group at -2 and 3 positions, and α-(1→2)-linked 4--methylglucopyranosyluronic acid (MeGlcA). Acetyl xylan esterases (AcXE) that target mono- or doubly acetylated Xyl are well characterized; however, the previously studied AcXE from (AcXE) was the first to remove the acetyl group from 2--MeGlcA-3--acetyl-substituted Xyl units, yet structural characteristics of these enzymes remain unspecified.
View Article and Find Full Text PDFThe environmental microbiome harbors a vast repertoire of antibiotic resistance genes (ARGs) which can serve as evolutionary predecessors for ARGs found in pathogenic bacteria, or can be directly mobilized to pathogens in the presence of selection pressures. Thus, ARGs from benign environmental bacteria are an important resource for understanding clinically relevant resistance. Here, we conduct a comprehensive functional analysis of the Antibiotic_NAT family of aminoglycoside acetyltransferases.
View Article and Find Full Text PDFThe coordinated action of carbohydrate-active enzymes has mainly been evaluated for the purpose of complete saccharification of plant biomass (lignocellulose) to sugars. By contrast, the coordinated action of accessory hemicellulases on xylan debranching and recovery is less well characterized. Here, the activity of two family GH115 α-glucuronidases (SdeAgu115A from Saccharophagus degradans, and AxyAgu115A from Amphibacillus xylanus) on spruce arabinoglucuronoxylan (AGX) was evaluated in combination with an α-arabinofuranosidase from families GH51 (AniAbf51A, aka E-AFASE from Aspergillus niger) and GH62 (SthAbf62A from Streptomyces thermoviolaceus).
View Article and Find Full Text PDFCarbon-carbon bond formation is one of the most important reactions in biocatalysis and organic chemistry. In nature, aldolases catalyze the reversible stereoselective aldol addition between two carbonyl compounds, making them attractive catalysts for the synthesis of various chemicals. In this work, we identified several 2-deoxyribose-5-phosphate aldolases (DERAs) having acetaldehyde condensation activity, which can be used for the biosynthesis of ()-1,3-butanediol (1,3BDO) in combination with aldo-keto reductases (AKRs).
View Article and Find Full Text PDFGlycoside hydrolase family 74 (GH74) is a historically important family of -β-glucanases. On the basis of early reports of detectable activity on cellulose and soluble cellulose derivatives, GH74 was originally considered to be a "cellulase" family, although more recent studies have generally indicated a high specificity toward the ubiquitous plant cell wall matrix glycan xyloglucan. Previous studies have indicated that GH74 xyloglucanases differ in backbone cleavage regiospecificities and can adopt three distinct hydrolytic modes of action: , -dissociative, and -processive.
View Article and Find Full Text PDFproduces a single multimodular enzyme containing a glycoside hydrolase (GH) family 74 module (AIQ73809). Recombinant production and characterization of the GH74 module (GH74) revealed a highly specific, processive -xyloglucanase that can hydrolyze the polysaccharide backbone at both branched and unbranched positions. X-ray crystal structures obtained for the free enzyme and oligosaccharide complexes evidenced an extensive hydrophobic binding platform - the first in GH74 extending from subsites -4 to +6 - and unique mobile active-site loops.
View Article and Find Full Text PDFSrc homology 2 (SH2) domains play a critical role in signal transduction in mammalian cells by binding to phosphorylated Tyr (pTyr). Apart from a few isolated cases in viruses, no functional SH2 domain has been identified to date in prokaryotes. Here we identify 93 SH2 domains from Legionella that are distinct in sequence and specificity from mammalian SH2 domains.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
October 2018
The pathogenic strategy of and many other gram-negative pathogens relies on the translocation of a specific set of proteins, called effectors, into the eukaryotic host cell during infection. These effectors act in concert to modulate host cell processes in favor of the invading pathogen. Injected by the type III secretion system (T3SS), the effector arsenal of enterohemorrhagic (EHEC) O157:H7 features at least eight individual NleG effectors, which are also found across diverse attaching and effacing pathogens.
View Article and Find Full Text PDFThe production of antibiotics by microbes in the environment and their use in medicine and agriculture select for existing and emerging resistance. To address this inevitability, prudent development of antibiotic drugs requires careful consideration of resistance evolution. Here, we identify the molecular basis for expanded substrate specificity in MphI, a macrolide kinase (Mph) that does not confer resistance to erythromycin, in contrast to other known Mphs.
View Article and Find Full Text PDFAminoglycoside N-acetyltransferases (AACs) confer resistance against the clinical use of aminoglycoside antibiotics. The origin of AACs can be traced to environmental microbial species representing a vast reservoir for new and emerging resistance enzymes, which are currently undercharacterized. Here, we performed detailed structural characterization and functional analyses of four metagenomic AAC (meta-AACs) enzymes recently identified in a survey of agricultural and grassland soil microbiomes ( Forsberg et al.
View Article and Find Full Text PDFMetagenomics has made accessible an enormous reserve of global biochemical diversity. To tap into this vast resource of novel enzymes, we have screened over one million clones from metagenome DNA libraries derived from sixteen different environments for carboxylesterase activity and identified 714 positive hits. We have validated the esterase activity of 80 selected genes, which belong to 17 different protein families including unknown and cyclase-like proteins.
View Article and Find Full Text PDFRifampin (RIF) phosphotransferase (RPH) confers antibiotic resistance by conversion of RIF and ATP, to inactive phospho-RIF, AMP and Pi. Here we present the crystal structure of RPH from Listeria monocytogenes (RPH-Lm), which reveals that the enzyme is comprised of three domains: two substrate-binding domains (ATP-grasp and RIF-binding domains); and a smaller phosphate-carrying His swivel domain. Using solution small-angle X-ray scattering and mutagenesis, we reveal a mechanism where the swivel domain transits between the spatially distinct substrate-binding sites during catalysis.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2016
Autophagy is an essential component of innate immunity, enabling the detection and elimination of intracellular pathogens. Legionella pneumophila, an intracellular pathogen that can cause a severe pneumonia in humans, is able to modulate autophagy through the action of effector proteins that are translocated into the host cell by the pathogen's Dot/Icm type IV secretion system. Many of these effectors share structural and sequence similarity with eukaryotic proteins.
View Article and Find Full Text PDFUbiquitination is a key protein post-translational modification that regulates many important cellular pathways and whose levels are regulated by equilibrium between the activities of ubiquitin ligases and deubiquitinases. Here, we present a method to identify specific deubiquitinase substrates based on treatment of cell lysates with recombinant enzymes, immunoaffinity purification, and global quantitative proteomic analysis. As a model system to identify substrates, we used a virulence-related deubiquitinase, SseL, secreted by Salmonella enterica serovar Typhimurium into host cells.
View Article and Find Full Text PDF