Forty percent of terrestrial ecosystems require recurrent fires driven by feedbacks between fire and plant fuels. The accumulation of fine fuels in these ecosystems play a key role in fire intensity, which alters soil nutrients and shapes soil microbial and plant community responses to fire. Changes to post-fire plant fuel production are well known to feed back to future fires, but post-fire decomposition of new fuels is poorly understood.
View Article and Find Full Text PDFFires occur in most terrestrial ecosystems where they drive changes in the traits, composition, and diversity of fungal communities. Fires range from rare, stand-replacing wildfires to frequent, prescribed fires used to mimic natural fire regimes. Fire regime factors, including burn severity, fire intensity, and timing, vary widely and likely determine how fungi respond to fires.
View Article and Find Full Text PDFBecause of their steep gradients in abiotic and biotic factors, mountains offer an ideal setting to illuminate the mechanisms that underlie patterns of species distributions and community assembly. We compared the composition of taxonomically and functionally diverse fungal communities in soils along five elevational gradients in mountains of the Neo- and Palaeotropics (northern Argentina, southern Brazil, Panama, Malaysian Borneo and Papua New Guinea). Both the richness and composition of soil fungal communities reflect environmental factors, particularly temperature and soil pH, with some shared patterns among neotropical and palaeotropical regions.
View Article and Find Full Text PDFThe arctic tundra is undergoing climate-driven changes and there are serious concerns related to the future of arctic biodiversity and altered ecological processes under possible climate change scenarios. Arctic land surface temperatures and precipitation are predicted to increase further, likely causing major transformation in terrestrial ecosystems. As a response to increasing temperatures, shifts in vegetation and soil fungal communities have already been observed.
View Article and Find Full Text PDFFire alters microbial community composition, and is expected to increase in frequency due to climate change. Testing whether microbes in different ecosystems will respond similarly to increased fire disturbance is difficult though, because fires are often unpredictable and hard to manage. Fire recurrent or pyrophilic ecosystems, however, may be useful models for testing the effects of frequent disturbance on microbes.
View Article and Find Full Text PDFWhile the negative effects of infrequent, high-intensity fire on soil fungal abundance are well-understood, it remains unclear how the short-term history of frequent, low-intensity fire in fire-dependent ecosystems impacts abundance, and whether this history governs any abundance declines. We used prescribed fire to experimentally alter the short-term fire history of patches within a fire-frequented old-growth pine savanna over a 3 y period. We then quantified fungal abundance before and after the final fire using phospholipid fatty acid (PLFA) assays and Droplet Digital™ PCR (ddPCR).
View Article and Find Full Text PDFPyrogenic savannas with a tree-grassland 'matrix' experience frequent fires (i.e. every 1-3 yr).
View Article and Find Full Text PDFFungi play a key role in soil-plant interactions, nutrient cycling and carbon flow and are essential for the functioning of arctic terrestrial ecosystems. Some studies have shown that the composition of fungal communities is highly sensitive to variations in environmental conditions, but little is known about how the conditions control the role of fungal communities (i.e.
View Article and Find Full Text PDFThe distribution patterns of tropical ectomycorrhizal (ECM) fungi along altitudinal gradients remain largely unknown. Furthermore, despite being an iconic site for biodiversity research, virtually nothing is known about the diversity and spatial patterns of fungi on Mt Kinabalu and neighbouring mountain ranges. We carried out deep DNA sequencing of soil samples collected between 425 and 4000 m above sea level to compare richness and community composition of ECM fungi among altitudinal forest types in Borneo.
View Article and Find Full Text PDF