Publications by authors named "Tatiana Moroz"

In the version of this Article originally published the location of Punta Arenas was incorrect and should have read 'Chile' in Figures 3-5 and in the Supplementary Information. This has been corrected in all versions of the Article.

View Article and Find Full Text PDF

Ctenophora, comprising approximately 200 described species, is an important lineage for understanding metazoan evolution and is of great ecological and economic importance. Ctenophore diversity includes species with unique colloblasts used for prey capture, smooth and striated muscles, benthic and pelagic lifestyles, and locomotion with ciliated paddles or muscular propulsion. However, the ancestral states of traits are debated and relationships among many lineages are unresolved.

View Article and Find Full Text PDF

The origins of neural systems remain unresolved. In contrast to other basal metazoans, ctenophores (comb jellies) have both complex nervous and mesoderm-derived muscular systems. These holoplanktonic predators also have sophisticated ciliated locomotion, behaviour and distinct development.

View Article and Find Full Text PDF

RNA-seq or transcriptome analysis of individual cells and small-cell populations is essential for virtually any biomedical field. It is especially critical for developmental, aging, and cancer biology as well as neuroscience where the enormous heterogeneity of cells present a significant methodological and conceptual challenge. Here we present two methods that allow for fast and cost-efficient transcriptome sequencing from ultra-small amounts of tissue or even from individual cells using semiconductor sequencing technology (Ion Torrent, Life Technologies).

View Article and Find Full Text PDF

Among mutations in human Runx1/AML1 transcription factors, the t(8;21)(q22;q22) genomic translocation that creates an AML1-ETO fusion protein is implicated in etiology of the acute myeloid leukemia. To identify genes and components associated with this oncogene we used Drosophila as a genetic model. Expression of AML1-ETO caused an expansion of hematopoietic precursors in Drosophila, which expressed high levels of reactive oxygen species (ROS).

View Article and Find Full Text PDF

Purpose: The differentiation marker 2M6 has been used to identify Müller cells within the developing chick retina for several years, although the molecular identity of 2M6 was not known. This study was aimed at determining the identity of the protein antigen recognized by the 2M6 monoclonal antibody.

Methods: Affinity chromatography and subsequent mass spectrometry were used to determine the molecular identity of the 2M6 antigen.

View Article and Find Full Text PDF

Using a large consortium of undergraduate students in an organized program at the University of California, Los Angeles (UCLA), we have undertaken a functional genomic screen in the Drosophila eye. In addition to the educational value of discovery-based learning, this article presents the first comprehensive genomewide analysis of essential genes involved in eye development. The data reveal the surprising result that the X chromosome has almost twice the frequency of essential genes involved in eye development as that found on the autosomes.

View Article and Find Full Text PDF

The presence of carbonic anhydrase (CA) activity in the neural retina has been known for several decades. CA-II, a soluble cytoplasmic isoform expressed by Müller cells and a subset of amacrine cells, was thought to be the sole source of CA activity in the neural retina. However, CA-II deficient mice retain CA activity in the neural retina, which implies that another isoform must be present in that tissue.

View Article and Find Full Text PDF

Recent reports by this laboratory and others have demonstrated an association between 5A11/Basigin, a member of the immunoglobulin gene superfamily, and monocarboxylate transporter-1 (MCT1), a lactose transporter. Indeed, it was determined in the 5A11/Basigin null mouse retina that MCT1 does not properly integrate into the cell membranes of Müller cells (MCs) or the retinal-pigmented epithelium, where the two are colocalized. The purpose of this study was to elucidate the association of 5A11/Basigin and MCT1 in the developing mouse retina.

View Article and Find Full Text PDF

Purpose: 5A11/Basigin has recently been identified as a critical glycoprotein for full maturity and function of the mouse retina. However, the biological function of 5A11/Basigin has yet to be determined. Previous reports indicate the presence of multiple 5A11/Basigin polypeptides within the retina.

View Article and Find Full Text PDF

5A11/Basigin is an immunoglobulin-like glycoprotein expressed on the surface of Müller cells, the apical and basal surfaces of the retinal pigmented epithelium, and photoreceptor cell bodies and their inner segments. Disruption of the 5A11/Basigin gene in the mouse results in photoreceptor degeneration and a corresponding decrease in electroretinogram amplitudes in mature mice. The purpose of this study was to examine the electrophysiology of the 5A11/Basigin null mouse retina at earlier ages than previously examined.

View Article and Find Full Text PDF