During skeletal muscle unloading, phosphoinositide 3-kinase (PI3K), and especially PI3K gamma (PI3Kγ), can be activated by changes in membrane potential. Activated IP3 can increase the ability of Ca to enter the nucleus through IP3 receptors. This may contribute to the activation of transcription factors that initiate muscle atrophy processes.
View Article and Find Full Text PDFThe current study aimed to investigate the hypothesis that purinergic receptors P2Y1 and P2Y2 play a regulatory role in gene expression in unloaded muscle. ATP is released from cells through pannexin channels, and it interacts with P2Y1 and P2Y2 receptors, leading to the activation of markers of protein catabolism and a reduction in protein synthesis. To test this hypothesis thirty-two rats were randomly divided into four groups (8 per group): a non-treated control group (C), a group subjected to three days of hindlimb unloading with a placebo (HS), a group subjected to three days of hindlimb unloading treated with a P2Y1 receptor inhibitor, MRS2179 (HSM), and a group subjected to three days of hindlimb unloading treated with a P2Y2 receptor inhibitor, AR-C 118925XX (HSA).
View Article and Find Full Text PDFSkeletal muscle abnormalities and atrophy during unloading are accompanied by the accumulation of excess calcium in the sarcoplasm. We hypothesized that calcium accumulation may occur, among other mechanisms, due to the inhibition of sarco/endoplasmic reticulum Ca-ATPase (SERCA) activity. Consequently, the use of the SERCA activator will reduce the level of calcium in the sarcoplasm and prevent the negative consequences of muscle unloading.
View Article and Find Full Text PDFInt J Environ Res Public Health
September 2023
Background: The COVID-19 pandemic further exposed the prevalence of existing health disparities in Black communities in the U.S. The current study evaluates COVID-19 data collected in Gary, Indiana, from June 2020 to June 2021.
View Article and Find Full Text PDFThis Special Issue presents some of the most recent studies on the skeletal muscle denervation [...
View Article and Find Full Text PDFUnlabelled: Skeletal muscle unloading leads to the decreased electrical activity and decline of muscle tone.
Aims: Current study evaluated the effect of muscle tone preservation achieved by tetanus toxin (TeNT) treatment on signaling pathways regulating atrophic processes during unloading.
Main Methods: Four groups of rats were used: non-treated control (C), control rats with TeNT administration (CT), 7 days of unloading/hindlimb suspension with placebo (HS), and 7 days of unloading with TeNT administration (HST).
Skeletal muscle unloading results in atrophy. We hypothesized that pannexin 1 ATP-permeable channel (PANX1) is involved in the response of muscle to unloading. We tested this hypothesis by blocking PANX1, which regulates efflux of ATP from the cytoplasm.
View Article and Find Full Text PDFThe ubiquitously expressed adaptor protein Shc exists in three isoforms p46Shc, p52Shc, and p66Shc, which execute distinctly different actions in cells. The role of p46Shc is insufficiently studied, and the purpose of this study was to further investigate its functional significance. We developed unique rat mutants lacking p52Shc and p46Shc isoforms (p52Shc/46Shc-KO) and carried out histological analysis of skeletal and cardiac muscle of parental and genetically modified rats with impaired gait.
View Article and Find Full Text PDFUnloading leads to skeletal muscle atrophy via the upregulation of MuRF-1 and MAFbx E3-ligases expression. Reportedly, histone deacetylases (HDACs) 4 and 5 may regulate the expression of MuRF1 and MAFbx. To examine the HDAC-dependent mechanisms involved in the control of E3-ubiquitin ligases expression at the early stages of muscle unloading we used HDACs 4 and 5 inhibitor LMK-235 and HDAC 4 inhibitor Tasqinimod (Tq).
View Article and Find Full Text PDFTo test the hypothesis that p38α-MAPK plays a critical role in the regulation of E3 ligase expression and skeletal muscle atrophy during unloading, we used VX-745, a selective p38α inhibitor. Three groups of rats were used: non-treated control (C), 3 days of unloading/hindlimb suspension (HS), and 3 days HS with VX-745 inhibitor (HSVX; 10 mg/kg/day). Total weight of soleus muscle in HS group was reduced compared to C (72.
View Article and Find Full Text PDFIn bacteria, chromosomal DNA resides in the cytoplasm, and most transcription factors are also found in the cytoplasm. However, some transcription factors, called membrane-bound transcription factors (MTFs), reside in the cytoplasmic membrane. Here, we report the identification of a new MTF in the Gram-positive pathogen and its regulation by the protease FtsH.
View Article and Find Full Text PDFDamage to peripheral nerve tissue may cause loss of function in both the nerve and the targeted muscles it innervates. This study compared the repair capability of engineered nerve conduit (ENC), engineered fibroblast conduit (EFC), and autograft in a 10-mm tibial nerve gap. ENCs were fabricated utilizing primary fibroblasts and the nerve cells of rats on embryonic day 15 (E15).
View Article and Find Full Text PDFBackground: Animal studies showed that alcoholic myopathy is characterized by the reduction in myofiber cross-sectional area (CSA) and by impaired anabolic signaling. The goal of this study was to compare changes in CSA and fiber type composition with modifications in anabolic and catabolic signaling pathways at the early stages of alcohol misuse in humans.
Methods: Skeletal muscle samples from 7 male patients with chronic alcohol abuse (AL; 47.
We tested whether NF-B pathway is indispensable for the increase in expression of E3-ligases and unloading-induced muscle atrophy using IKKβ inhibitor IMD-0354. Three groups of rats were used: nontreated control (C), 3 days of unloading/hindlimb suspension with (HS+IMD) or without (HS) IMD-0354. Levels of IB were higher in HS+IMD (1.
View Article and Find Full Text PDFMinerva Endocrinol
December 2016
Obesity is reaching epidemic proportions in developed countries and is on the rise in developing countries. Obesity-related changes in lipid and glucose metabolism predispose to the development of metabolic syndrome and type 2 diabetes. Skeletal muscle constitutes about 40 percent of total body weight and is unique compared to other muscle types since it is one of the most important organs for insulin-dependent glucose metabolism in humans.
View Article and Find Full Text PDFUnloading causes rapid skeletal muscle atrophy due to increased protein degradation via activation of calpains and decreased protein synthesis. Our study elucidated role of calpain-1 in the regulation of ubiquitin proteasome pathway (UPP) and anabolic processes mediated by Akt-mTOR-p70S6K and MAPK-Erk (p90RSK) signaling. We hypothesized that blocking calpain will inhibit activation of UPP and decrease protein degradation resulting in reduction of unloading-induced skeletal muscle atrophy.
View Article and Find Full Text PDFEccentric exercise is known to disrupt sarcolemmal integrity and induce damage of skeletal muscle fibers. We hypothesized that L-arginine (L-Arg; nitric oxide synthase (NOS) substrate) supplementation prior to a single bout of eccentric exercise would diminish exercise-induced damage. In addition, we used N-nitro-L-arginine methyl ester hydrochloride (L-NAME; NOS inhibitor) to clarify the role of native NOS activity in the development of exercise-induced muscle damage.
View Article and Find Full Text PDFIt is of interest to quantify the size, shape, and metabolic subtype of skeletal muscle fibers in many areas of biomedical research. To do so, skeletal muscle samples are sectioned transversely to the length of the muscle and labeled for extracellular or membrane proteins to delineate the fiber boundaries and additionally for biomarkers related to function or metabolism. The samples are digitally photographed and the fibers "outlined" for quantification of fiber cross-sectional area (CSA) using pointing devices interfaced to a computer, which is tedious, prone to error, and can be nonobjective.
View Article and Find Full Text PDFThe musculoskeletal system (muscle-tendon-bone) demonstrates numerous age-related changes, with modifications in tendons the least well studied, although increased predisposition to tendinopathy and rupture have been reported. In order to gain insights into the basis of age-associated increase in tendon injuries, we compared Achilles and tibialis anterior tendons and myotendinous junctions (MTJs) from 3- to 5- and 22- to 25-month-old rats for underlying structure and composition. Significant decreases were observed by qRT-PCR for collagen I, III, and V mRNA expression in tendons of old rats, but immunostaining detected no apparent differences in collagen I and V expression on the protein level.
View Article and Find Full Text PDFScaffoldless engineered 3D skeletal muscle tissue created from satellite cells offers the potential to replace muscle tissue that is lost due to severe trauma or disease. Transforming growth factor-beta 1 (TGF-β1) plays a vital role in mediating migration and differentiation of satellite cells during the early stages of muscle development. Additionally, TGF-β1 promotes collagen type I synthesis in the extracellular matrix (ECM) of skeletal muscle, which provides a passive elastic substrate to support myofibres and facilitate the transmission of force.
View Article and Find Full Text PDFThe development of engineered skeletal muscle would provide a viable tissue for replacement and repair of muscle damaged by disease or injury. Our current tissue-engineering methods result in three-dimensional (3D) muscle constructs that generate tension but do not advance phenotypically beyond neonatal characteristics. To develop to an adult phenotype, innervation and vascularization of the construct must occur.
View Article and Find Full Text PDFThe anterior cruciate ligament (ACL), a major stabilizer of the knee, is commonly injured. Because of its intrinsic poor healing ability, a torn ACL is usually reconstructed by a graft. We developed a multi-phasic, or bone-ligament-bone, tissue-engineered construct for ACL grafts using bone marrow stromal cells and sheep as a model system.
View Article and Find Full Text PDFAm J Physiol Regul Integr Comp Physiol
November 2011
An association between oxidative stress and muscle atrophy and weakness in vivo is supported by elevated oxidative damage and accelerated loss of muscle mass and force with aging in CuZn-superoxide dismutase-deficient (Sod1(-/-)) mice. The purpose was to determine the basis for low specific force (N/cm(2)) of gastrocnemius muscles in Sod1(-/-) mice and establish the extent to which structural and functional changes in muscles of Sod1(-/-) mice resemble those associated with normal aging. We tested the hypothesis that muscle weakness in Sod1(-/-) mice is due to functionally denervated fibers by comparing forces during nerve and direct muscle stimulation.
View Article and Find Full Text PDFOssabaw swine fed excess kilocalorie diet develop metabolic syndrome (MS) characterized by obesity, hypertension, insulin resistance, and glucose intolerance with/without dyslipidemia. The purpose of this study was to test the hypothesis that MS would have a detrimental effect on skeletal muscle structure and cause changes in the expression of myosin heavy chains (MHCs). Adult male Ossabaw swine were fed for 24 wk high-fructose or high-fat/cholesterol/fructose diets to induce normolipidemic MS (MetS) or dyslipidemic MS (DMetS), respectively, and were compared with the lean swine on control diet.
View Article and Find Full Text PDF