Biochemistry (Mosc)
January 2023
The amino acid sequences of the coat proteins (CPs) of the potexviruses potato virus X (PVX) and alternanthera mosaic virus (AltMV) share ~40% identity. The N-terminal domains of these proteins differ in the amino acid sequence and the presence of the N-terminal fragment of 28 residues (ΔN peptide) in the PVX CP. Here, we determined the effect of the N-terminal domain on the structure and physicochemical properties of PVX and AltMV virions.
View Article and Find Full Text PDFA recombinant vaccine candidate has been developed based on the major coronaviruses' antigen (S protein) fragments and a novel adjuvant-spherical particles (SPs) formed during tobacco mosaic virus thermal remodeling. The receptor-binding domain and the highly conserved antigenic fragments of the S2 protein subunit were chosen for the design of recombinant coronavirus antigens. The set of three antigens (Co1, CoF, and PE) was developed and used to create a vaccine candidate composed of antigens and SPs (SPs + 3AG).
View Article and Find Full Text PDFThe present work addresses the thermal remodelling of flexible plant viruses with a helical structure and virus-like particles (VLPs). Here, for the first time, the possibility of filamentous Alternanthera mosaic virus (AltMV) virions' thermal transition into structurally modified spherical particles (SP) has been demonstrated. The work has established differences in formation conditions of SP from virions (SPV) and VLPs (SPVLP) that are in accordance with structural data (on AltMV virions and VLPs).
View Article and Find Full Text PDFPlant viruses and their virus-like particles (VLPs) have a lot of advantages for biotechnological applications including complete safety for humans. Alternanthera mosaic virus (AltMV) is a potentially promising object for design of novel materials. The 3D structures of AltMV virions and its VLPs were obtained by single particle EM at ~13Å resolution.
View Article and Find Full Text PDF