Publications by authors named "Tatiana E Koike"

Skeletal muscle regeneration involves a signaling network that regulates the proliferation, differentiation, and fusion of muscle precursor cells to injured myofibers. IRE1α, one of the arms of the unfolded protein response, regulates cellular proteostasis in response to ER stress. Here, we demonstrate that inducible deletion of IRE1α in satellite cells of mice impairs skeletal muscle regeneration through inhibiting myoblast fusion.

View Article and Find Full Text PDF

Skeletal muscle regeneration involves coordinated activation of an array of signaling pathways. Fibroblast growth factor-inducible 14 (Fn14) is a bona fide receptor for the TWEAK cytokine. Levels of Fn14 are increased in the skeletal muscle of mice after injury.

View Article and Find Full Text PDF

The aim of the current study was to investigate the effect of glutamine supplementation on the expression of HSP70 and the calcium-binding proteins from the S100 superfamily in the recovering extensor digitorum longus (EDL) muscle after injury. Two-month-old Wistar rats were subjected to cryolesion of the EDL muscle and then randomly divided into two groups (with or without glutamine supplementation). Starting immediately after the injury, the supplemented group received daily doses of glutamine (1 g/kg/day, via gavage) for 3 and 10 days orally.

View Article and Find Full Text PDF

Muscular dystrophies make up a group of genetic neuromuscular disorders that involve severe muscle wasting. TGF-β-activated kinase 1 (TAK1) is an important signaling protein that regulates cell survival, growth, and inflammation. TAK1 has been recently found to promote myofiber growth in the skeletal muscle of adult mice.

View Article and Find Full Text PDF

Skeletal muscle atrophy is a prevalent complication in multiple chronic diseases and disuse conditions. Fibroblast growth factor-inducible 14 (Fn14) is a member of the TNF receptor superfamily and a bona fide receptor of the TWEAK cytokine. Accumulating evidence suggests that Fn14 levels are increased in catabolic conditions as well as during exercise.

View Article and Find Full Text PDF

Aim: It has been suggested that the proliferation and early differentiation of myoblasts are impaired in Marfan syndrome (MFS) mice during muscle regeneration. However, the underlying cellular and molecular mechanisms remain poorly understood. Here, we investigated muscle regeneration in MFS mouse models by analyzing the influence of the fibrotic niche on satellite cell function.

View Article and Find Full Text PDF

Background: Fetal stage is a critical developmental window for the skeletal muscle, but little information is available about the impact of maternal vitamin D (Vit. D) deficiency (VDD) on offspring lean mass development in the adult life of male and female animals.

Methods: Female rats (Wistar Hannover) were fed either a control (1000 IU Vit.

View Article and Find Full Text PDF

Knockout (ko) mice for the β2 adrenoceptor (Adrβ2) have impaired skeletal muscle regeneration, suggesting that this receptor is important for muscle stem cell (satellite cell) function. Here, we investigated the role of Adrβ2 in the function of satellite cells from β2ko mice in the context of muscle regeneration, through in vivo and in vitro experiments. Immunohistochemical analysis showed a significant reduction in the number of self-renewed Pax7 satellite cells, proliferating Pax7/MyoD myogenic precursor cells, and regenerating eMHC myofibers in regenerating muscle of β2ko mice at 30, 3, and 10 days post-injury, respectively.

View Article and Find Full Text PDF

This study evaluated the effects of glutamine supplementation immediately after freezing injury on morphological and contractile function of regenerating soleus muscles from rats. Young male Wistar rats were subjected to cryolesion of soleus muscles, and immediately after received a daily supplementation of glutamine (1 g/kg/day). The muscles were evaluated on post-injury days 3 and 10.

View Article and Find Full Text PDF

The aim of the present study was to verify the effects of muscular strength training and growth hormone (GH) supplementation on femoral bone tissue by Raman spectroscopy (Raman), dual-energy X-ray absorptiometry (DXA), and mechanical resistance (F-max) analysis. A total of 40 male Wistar animals, 60 days old, were used. The animals were distributed into four groups: control (C), control with GH (GHC), muscular strength training (T), and muscular strength training with GH (GHT).

View Article and Find Full Text PDF

Objectives: To evaluate alterations from different therapies in muscular injury using the Fractal Dimension (FD) method.

Methods: 35 animals were allocated in Control Group (C), Injury Control Group (IC), Injury Low Level Laser Therapy Group (ILT), Injury Platelet Rich Plasma Group (IP), and Injury LLLT and PRP Group (ILP). The animals suffered a stretch injury in gastrocnemius muscle and after that IP and ILP groups received PRP application.

View Article and Find Full Text PDF

Objective: Muscle injuries are common, and their treatment requires costs and time off. Platelet rich plasma and low level laser therapy have been shown to be affordable and easy to use. The aim of this study was to evaluate the associated effects of low level laser therapy and platelet rich plasma on the treatment of the soleus muscle injured by strain in rats.

View Article and Find Full Text PDF

Treatment of muscle injuries usually results in the interruption of sports practice; thus, studies aimed at accelerating the return to activity, with proper tissue repair, are important. Therefore, this study aimed to evaluate the effects of photobiomodulation (PBM), associated or not with platelet-rich plasma (PRP), on the treatment of muscle injury. Thirty-five animals were used and divided into five groups (n = 7): control (C), control lesion (CL), lesion treated with low-level laser therapy (LLLT) (LLt), lesion treated with PRP (LP), and lesion treated with both techniques, LLLT and PRP (LLtP).

View Article and Find Full Text PDF

Objectives: To describe the effects of immobilization, free remobilization and remobilization by physical exercise about mechanical properties of skeletal muscle of rats of two age groups.

Methods: 56 Wistar rats divided into two groups according to age, an adult group (five months) and an older group (15 months). These groups were subdivided in: control, immobilized, free remobilized and remobilized by physical exercise.

View Article and Find Full Text PDF