Publications by authors named "Tatiana E Erova"

Earlier, we reported the identification of new virulence factors/mechanisms of using an signature-tagged mutagenesis (STM) screening approach. From this screen, the role of , which encodes an ATP-binding protein of ribose transport system, and , an essential component of the type VI secretion system (T6SS), were evaluated in mouse models of plague and confirmed to be important during infection. However, many of the identified genes from the screen remained uncharacterized.

View Article and Find Full Text PDF

The family members, including the infamous , the causative agent of plague, have a highly conserved interbacterial signaling system that is mediated by the autoinducer-2 (AI-2) quorum-sensing molecule. The AI-2 system is implicated in regulating various bacterial virulence genes in diverse environmental niches. Deletion of the gene encoding the synthetic enzyme for the AI-2 substrate, , leads to either no significant change or, paradoxically, an increase in bacterial virulence.

View Article and Find Full Text PDF

We evaluated the extent of attenuation and immunogenicity of the Δ and Δ Δ mutants of serovar Typhimurium when delivered to mice by the oral route. These mutants were deleted either for the Braun lipoprotein genes ( and ) or in combination with the gene, which encodes an acetyltransferase required for lipid A modification of lipopolysaccharide. Both the mutants were attenuated (100% animal survival) and triggered robust innate and adaptive immune responses.

View Article and Find Full Text PDF

Currently, no plague vaccine exists in the United States for human use. The capsular antigen (Caf1 or F1) and two type 3 secretion system (T3SS) components, the low-calcium-response V antigen (LcrV) and the needle protein YscF, represent protective antigens of Yersinia pestis We used a replication-defective human type 5 adenovirus (Ad5) vector and constructed recombinant monovalent and trivalent vaccines (rAd5-LcrV and rAd5-YFV) that expressed either the codon-optimized lcrV or the fusion gene designated YFV (consisting of ycsF, caf1, and lcrV). Immunization of mice with the trivalent rAd5-YFV vaccine by either the intramuscular (i.

View Article and Find Full Text PDF

Necrotizing fasciitis (NF) caused by flesh-eating bacteria is associated with high case fatality. In an earlier study, we reported infection of an immunocompetent individual with multiple strains of Aeromonas hydrophila (NF1-NF4), the latter three constituted a clonal group whereas NF1 was phylogenetically distinct. To understand the complex interactions of these strains in NF pathophysiology, a mouse model was used, whereby either single or mixed A.

View Article and Find Full Text PDF

Earlier, we showed that the Δlpp ΔmsbB Δail triple mutant of Yersinia pestis CO92 with deleted genes encoding Braun lipoprotein (Lpp), an acyltransferase (MsbB), and the attachment invasion locus (Ail), respectively, was avirulent in a mouse model of pneumonic plague. In this study, we further evaluated the immunogenic potential of the Δlpp ΔmsbB Δail triple mutant and its derivative by different routes of vaccination. Mice were immunized via the subcutaneous (s.

View Article and Find Full Text PDF

The identification of new virulence factors in Yersinia pestis and understanding their molecular mechanisms during an infection process are necessary in designing a better vaccine or to formulate an appropriate therapeutic intervention. By using a high-throughput, signature-tagged mutagenic approach, we created 5,088 mutants of Y. pestis strain CO92 and screened them in a mouse model of pneumonic plague at a dose equivalent to 5 50% lethal doses (LD50) of wild-type (WT) CO92.

View Article and Find Full Text PDF

Previously, we showed that deletion of genes encoding Braun lipoprotein (Lpp) and MsbB attenuated Yersinia pestis CO92 in mouse and rat models of bubonic and pneumonic plague. While Lpp activates Toll-like receptor 2, the MsbB acyltransferase modifies lipopolysaccharide. Here, we deleted the ail gene (encoding the attachment-invasion locus) from wild-type (WT) strain CO92 or its lpp single and Δlpp ΔmsbB double mutants.

View Article and Find Full Text PDF

The genomes of 10 Aeromonas isolates identified and designated Aeromonas hydrophila WI, Riv3, and NF1 to NF4; A. dhakensis SSU; A. jandaei Riv2; and A.

View Article and Find Full Text PDF

Currently, there is no FDA-approved vaccine against Yersinia pestis, the causative agent of bubonic and pneumonic plague. Since both humoral immunity and cell-mediated immunity are essential in providing the host with protection against plague, we developed a live-attenuated vaccine strain by deleting the Braun lipoprotein (lpp) and plasminogen-activating protease (pla) genes from Y. pestis CO92.

View Article and Find Full Text PDF

Previously, we reported that there was no enhancement in the virulence potential (as measured by cell culture infections) of the bacterial pathogen Yersinia pestis (YP) following modeled microgravity/clinorotation growth. We have now further characterized the effects of clinorotation (CR) on YP growth kinetics, antibiotic sensitivity, cold growth, and YP's virulence potential in a murine model of infection. Surprisingly, none of the aforementioned phenotypes were altered.

View Article and Find Full Text PDF

Aeromonas hydrophila, a Gram-negative bacterium, is an emerging human pathogen equipped with both a type 3 and a type 6 secretion system (T6SS). In this study, we evaluated the roles played by paralogous T6SS effector proteins, hemolysin co-regulated proteins (Hcp-1 and -2) and valine glycine repeat G (VgrG-1, -2 and -3) protein family members in A. hydrophila SSU pathogenesis by generating various combinations of deletion mutants of the their genes.

View Article and Find Full Text PDF

Braun (murein) lipoprotein (Lpp) and lipopolysaccharide (LPS) are major components of the outer membranes of Enterobacteriaceae family members that are capable of triggering inflammatory immune responses by activating Toll-like receptors 2 and 4, respectively. Expanding on earlier studies that demonstrated a role played by Lpp in Yersinia pestis virulence in mouse models of bubonic and pneumonic plague, we characterized an msbB in-frame deletion mutant incapable of producing an acyltransferase that is responsible for the addition of lauric acid to the lipid A moiety of LPS, as well as a Δlpp ΔmsbB double mutant of the highly virulent Y. pestis CO92 strain.

View Article and Find Full Text PDF

The gold standard in microbiology for monitoring bacterial dissemination in infected animals has always been viable plate counts. This method, despite being quantitative, requires sacrificing the infected animals. Recently, however, an alternative method of in vivo imaging of bioluminescent bacteria (IVIBB) for monitoring microbial dissemination within the host has been employed.

View Article and Find Full Text PDF

The repeat in toxin (Rtx) of an environmental isolate ATCC 7966 of Aeromonas hydrophila consists of six genes (rtxACHBDE) organized in an operon similar to the gene organization found for the Rtx of the Vibrio species. The first gene in this operon (rtxA) encodes an exotoxin in vibrios, while other genes code for proteins needed for proper activation of RtxA and in secretion of this toxin from Vibrio cholerae. However, the RtxA of ATCC 7966, as well as from the clinical isolate SSU of A.

View Article and Find Full Text PDF

Aeromonas hydrophila is both a human and animal pathogen, and the cytotoxic enterotoxin (Act) is a crucial virulence factor of this bacterium because of its associated hemolytic, cytotoxic, and enterotoxic activities. Previously, to define the role of some regulatory genes in modulating Act production, we showed that deletion of a glucose-inhibited division gene (gidA) encoding tRNA methylase reduced Act levels, while overproduction of DNA adenine methyltransferase (Dam) led to a concomitant increase in Act-associated biological activities of a diarrheal isolate SSU of A. hydrophila.

View Article and Find Full Text PDF

The Gram-negative plague bacterium, Yersinia pestis, has historically been regarded as one of the deadliest pathogens known to mankind, having caused three major pandemics. After being transmitted by the bite of an infected flea arthropod vector, Y. pestis can cause three forms of human plague: bubonic, septicemic, and pneumonic, with the latter two having very high mortality rates.

View Article and Find Full Text PDF

Yersinia pestis (YP), the gram-negative plague bacterium, has shaped human history unlike any other pathogen known to mankind. YP (transmitted by the bite of an infected flea) diverged only recently from the related enteric pathogen Yersinia pseudotuberculosis but causes radically different diseases. Three forms of plague exist in humans: bubonic (swollen lymph nodes or bubos), septicemic (spread of YP through the lymphatics or bloodstream from the bubos to other organs), and contagious, pneumonic plague which can be communicated via YP-charged respiratory droplets resulting in person-person transmission and rapid death if left untreated (50-90% mortality).

View Article and Find Full Text PDF

We evaluated two commercial F1 antigen capture-based immunochromatographic dipsticks, Yersinia Pestis (F1) Smart II and Plague BioThreat Alert test strips, in detecting plague bacilli by using whole-blood samples from mice experimentally infected with Yersinia pestis CO92. To assess the specificities of these dipsticks, an in-frame F1-deficient mutant of CO92 (Δcaf) was generated by homologous recombination and used as a negative control. Based on genetic, antigenic/immunologic, and electron microscopic analyses, the Δcaf mutant was devoid of a capsule.

View Article and Find Full Text PDF

In this study, we delineated the role of N-acylhomoserine lactone(s) (AHLs)-mediated quorum sensing (QS) in the virulence of diarrhoeal isolate SSU of Aeromonas hydrophila by generating a double knockout Delta ahyRI mutant. Protease production was substantially reduced in the Delta ahyRI mutant when compared with that in the wild-type (WT) strain. Importantly, based on Western blot analysis, the Delta ahyRI mutant was unable to secrete type VI secretion system (T6SS)-associated effectors, namely haemolysin coregulated protein and the valine-glycine repeat family of proteins, while significant levels of these effectors were detected in the culture supernatant of the WT A.

View Article and Find Full Text PDF

Deletion of the murein (Braun) lipoprotein gene, lpp, attenuates the Yersinia pestis CO92 strain in mouse models of bubonic and pneumonic plague. In this report, we characterized the virulence of strains from which the plasminogen activating protease (pla)-encoding pPCP1 plasmid was cured from either the wild-type (WT) or the Deltalpp mutant strain of Y. pestis CO92 in the mouse model of pneumonic infection.

View Article and Find Full Text PDF

In this study, we demonstrated that the surface-expressed enolase from diarrheal isolate SSU of Aeromonas hydrophila bound to human plasminogen and facilitated the latter's tissue-type plasminogen activator-mediated activation to plasmin. The bacterial surface-bound plasmin was more resistant to the action of its specific physiological inhibitor, the antiprotease alpha(2)-antiplasmin. We found that immunization of mice with purified recombinant enolase significantly protected the animals against a lethal challenge dose of wild-type (WT) A.

View Article and Find Full Text PDF

Yersinia pestis, the causative agent of human bubonic and pneumonic plague, is spread during natural infection by the fleas of rodents. Historically associated with infected rat fleas, studies on the kinetics of infection in rats are surprisingly few, and these reports have focused mainly on bubonic plague. Although the natural route of primary infection results in bubonic plague in humans, it is commonly thought that aerosolized Y.

View Article and Find Full Text PDF

A diarrheal isolate SSU of Aeromonas hydrophila produces a cytotoxic enterotoxin (Act) with cytotoxic, enterotoxic, and hemolytic activities. Our laboratory has characterized from the above Aeromonas strain, in addition to Act, the type 3- and T6-secretion systems and their effectors, as well as the genes shown to modulate the production of AI-1-like autoinducers, N-acylhomoserine lactones (AHLs) involved in quorum sensing (QS). In this study, we demonstrated the presence of an S-ribosylhomocysteinase (LuxS)-based autoinducer (AI)-2 QS system in A.

View Article and Find Full Text PDF