Background: Face COVID-19 pandemic, a need for accurate information on SARS-CoV-2 virus is urgent and scientific reports have been published on a daily basis to enable effective technologies to fight the disease progression. However, at the initial occurrence of Pandemic, no information on the matter was known and technologies to fight the Pandemic were not readily available. However, searches in patent databases, if strategically designed, can offer quick responses to new pandemics.
View Article and Find Full Text PDFIn this work, a drug delivery system for perillyl alcohol based on the peptide self-assembly containing 3-(2-benzothiazolyl)-7-(diethylamino)coumarin (C6) as a fluorescent additive is obtained, and its photophysical characteristics as well as its release dynamics were studied by steady-state and time-resolved fluorescence spectroscopy. Results proved the dynamics of drug release from the peptide nanostructures and showed that the system formed by the self-assembled peptide and C6, along with perillyl alcohol, presents unique photophysical properties that can be exploited to generate singlet oxygen (O) upon irradiation, which is not achieved by the sole components. Through epifluorescence microscopy combined with time-correlated single photon counting fluorescence spectroscopy, the release mechanism was proven to occur upon peptide structure interconversion, which is controlled by environmental changes.
View Article and Find Full Text PDFHerein, we describe the production of poly(hydroxybutyrate--hydroxyvalerate) [P(HB-HV)]-based microspheres containing coumarin-6 (C6) or pyrene (Py) fluorophores as additives and models for hydrophobic and hydrophilic drug encapsulation. Their photophysical and morphological properties, as well as encapsulation efficiencies, are studied as this work aims to describe the influence of additive hydrophobicity/hydrophilicity on microparticle formation. These properties were studied by scanning electron microscopy, fluorescence confocal laser scanning microscopy (FCLSM), and steady-state fluorescence spectroscopy.
View Article and Find Full Text PDFIn this work, supramolecular l-l-diphenylalanine (Phe-Phe) nanostructures were self-assembled in solvents of distinct polarity and in the presence of luminescent additives of distinct conjugation length that physically adhere to the nanostructures to provide growth environments of distinct properties. When the additive is poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene], an electron donor polymer, and solvent is tetrahydrofuran (THF), Phe-Phe vesicle-like structures are obtained, whereas in water and in the presence of a similar additive in structure, poly[5-methoxy-2-(3-sulfopropoxy)-1,4-phenylenevinylene], nanotubes are formed. In contrast, when 9-vinyl-carbazole, an electron acceptor additive is used, nanotubes are formed even when THF is the solvent.
View Article and Find Full Text PDFThe new heterocyclic derivative LQFM048 (3) (2,4,6-tris ((E)-ethyl 2-cyano-3-(4-hydroxy-3-methoxyphenyl)acrylate)-1,3,5-triazine) was originally designed through the molecular hybridization strategy from Uvinul® T 150 (1) and (E)-ethyl 2-cyano-3-(4hydroxy-3-methoxyphenyl)acrylate (2) sunscreens, using green chemistry approach. This compound was obtained in global yields (80%) and showed an interesting redox potential. In addition, it is thermally stable up to temperatures around 250°C.
View Article and Find Full Text PDF