Little information is available on how rhizosphere bacteria affect abscisic acid (ABA) levels in plants and whether these bacterial effects are associated with improved plant water status. In this study, we tested the hypothesis that the stimulation of plant growth may be associated with the ability of ABA to increase the hydraulic conductivity of roots through the up-regulation of aquaporin. To do this, we studied the effect of bacteria capable of producing ABA on a barley mutant deficient in this hormone.
View Article and Find Full Text PDFThe formation of apoplastic barriers is important for controlling the uptake of water and ions by plants, thereby influencing plant growth. However, the effects of plant growth-promoting bacteria on the formation of apoplastic barriers, and the relationship between these effects and the ability of bacteria to influence the content of hormones in plants, have not been sufficiently studied. The content of cytokinins, auxins and potassium, characteristics of water relations, deposition of lignin and suberin and the formation of Casparian bands in the root endodermis of durum wheat ( Desf.
View Article and Find Full Text PDFLipid transfer proteins (LTPs) are known to be involved in suberin deposition in the Casparian bands of pea roots, thereby reinforcing apoplast barriers. Moreover, the IB-Ki14 strain accelerated formation of the Casparian bands in wheat plants, although involvement of LTPs in the process was not studied. Here, we investigated the effects of IB-Ki14 on LTPs, formation of the Casparian bands, hydraulic conductance and activity of aquaporins (AQPs) in pea plants.
View Article and Find Full Text PDFstrain IB-Ki14 has recently been shown to strengthen the apoplastic barriers of salt-stressed plants, which prevents the entry of toxic sodium. It was of interest to find out whether the same effect manifests itself in the absence of salinity and how this affects the hydraulic conductivity of barley plants. Berberine staining confirmed that the bacterial treatment enhanced the deposition of lignin and suberin and formation of Casparian bands in the roots of barley plants.
View Article and Find Full Text PDFInoculation with plant growth-promoting rhizobacteria can increase plant salt resistance. We aimed to reveal bacterial effects on the formation of apoplastic barriers and hormone concentration in relation to maintaining ion homeostasis and growth of salt-stressed plants. The rhizosphere of a durum wheat variety was inoculated with cytokinin-producing and auxin-producing strains.
View Article and Find Full Text PDFAn ABA-deficient barley mutant (Az34) and its parental cultivar (Steptoe) were compared. Plants of salt-stressed Az34 (100 mmol m NaCl for 10 days) grown in sand were 40% smaller than those of "Steptoe", exhibited a lower leaf relative water content and lower ABA concentrations. Rhizosphere inoculation with IB22 increased plant growth of both genotypes.
View Article and Find Full Text PDFPlant-bacteria consortia are more effective in bioremediation of petroleum contaminated soil than when either organism is used individually. The reason for this is that plant root exudates promote growth and activity of oil degrading bacteria. However, insufficient attention has been paid to the ability of bacteria to influence root exudation.
View Article and Find Full Text PDFAlthough salinity inhibits plant growth, application of appropriate rhizosphere bacteria can diminish this negative effect. We studied one possible mechanism that may underlie this beneficial response. Wheat plants were inoculated with IB-22 and IB-Ki14 and their consequences for growth, water relations, and concentrations of the hormone abscisic acid (ABA) were followed in the presence of soil salinity.
View Article and Find Full Text PDFWater deficits inhibit plant growth and decrease crop productivity. Remedies are needed to counter this increasingly urgent problem in practical farming. One possible approach is to utilize rhizobacteria known to increase plant resistance to abiotic and other stresses.
View Article and Find Full Text PDFThe capacity of rhizoshere bacteria to influence plant hormonal status, by bacterial production or metabolism of hormones, is considered an important mechanism by which they promote plant growth, and productivity. Nevertheless, inoculating these bacteria into the plant rhizosphere may produce beneficial or detrimental results depending on bacterial effects on hormone composition and quantity , and the environmental conditions under which the plants are growing. This review considers some effects of bacterial hormone production or metabolism on root growth and development and shoot physiological processes.
View Article and Find Full Text PDFProtoplasma
September 2018
The aim of the present report was to demonstrate how a novel approach for immunohistochemical localization of cytokinins in the leaf and particularly in the phloem may complement to the study of their long-distance transport. Different procedures of fixation were used to conjugate either cytokinin bases or their ribosides to proteins of cytoplasm to enable visualization and differential localization of these cytokinins in the leaf cells of wheat plants. In parallel to immunolocalization of cytokinins in the leaf cells, we immunoassayed distribution of free bases of cytokinins, their nucleotides and ribosides between roots and shoots of wheat plants as well as their presence in phloem sap after incubation of leaves in a solution supplemented with either trans-zeatin or isopentenyladenine.
View Article and Find Full Text PDFPhytohormone production is one mechanism by which rhizobacteria can stimulate plant growth, but it is not clear whether the bacteria gain from this mechanism. The hypothesis that microbial-derived cytokinin phytohormones stimulate root exudation of amino acids was tested. The rhizosphere of wheat plants was drenched with the synthetic cytokinin trans-zeatin or inoculated with Bacillus subtilis IB-22 (which produces zeatin type cytokinins) or B.
View Article and Find Full Text PDFCytokinin flow from roots to shoots can serve as a long-distance signal important for root-to-shoot communication. In the past, changes in cytokinin flow from roots to shoots have been mainly attributed to changes in the rate of synthesis or breakdown in the roots. The present research tested the possibility that active uptake of cytokinin by root cells may also influence its export to shoots.
View Article and Find Full Text PDFRemoving 4 out of 5 serminal roots from 7-day-old wheat seedlings arrested leaf elongation for 1.5 h. This effect can be explained by an initial decrease in foliar water content resulting from the smaller root surface area available for water uptake.
View Article and Find Full Text PDF