Hearing loss is a major risk factor for tinnitus, hyperacusis, and central auditory processing disorder. Although recent studies indicate that hearing loss causes neuroinflammation in the auditory pathway, the mechanisms underlying hearing loss-related pathologies are still poorly understood. We examined neuroinflammation in the auditory cortex following noise-induced hearing loss (NIHL) and its role in tinnitus in rodent models.
View Article and Find Full Text PDFTraumatic brain injury (TBI) is a major cause of neurological disorder and death in civilian and military populations. It comprises two components-direct injury from the traumatic impact and secondary injury from ensuing neural inflammatory responses. Blocking tumor necrosis factor-alpha (TNF-α), a central regulator of neural inflammation, has been shown to improve functional recovery after TBI.
View Article and Find Full Text PDFEpithelial-mesenchymal transition (EMT) is an evolutionarily conserved process during which cells lose epithelial characteristics and gain a migratory phenotype. Although downregulation of epithelial cadherins by Snail and other transcriptional repressors is generally considered a prerequisite for EMT, recent studies have challenged this view. Here we investigate the relationship between E-cadherin and P-cadherin expression and localization, Snail function and EMT during gastrulation in chicken embryos.
View Article and Find Full Text PDFBackground: Transforming growth factor-beta (TGFβ) signaling regulates a myriad of biological processes during embryogenesis, in the adult, and during the manifestation of disease. TGFβ signaling is propagated through one of three TGFβ ligands interacting with Type I and Type II receptors, and Type III co-receptors. Although TGFβ signaling is regulated partly by the combinatorial expression patterns of TGFβ receptors and ligands, a comprehensive gene expression analysis has not been published.
View Article and Find Full Text PDFGEISHA (Gallus Expression In Situ Hybridization Analysis; http://geisha.arizona.edu) is an in situ hybridization gene expression and genomic resource for the chicken embryo.
View Article and Find Full Text PDFFGF signaling plays a pivotal role in regulating cell movements and lineage induction during gastrulation. Here we identify 44 microRNAs that are expressed in the primitive streak region of gastrula stage chicken embryos. We show that the primary effect of FGF signaling on microRNA abundance is to negatively regulate the levels of miR-let-7b, -9, -19b, -107, -130b, and -218.
View Article and Find Full Text PDFNeural crest stem cells can be isolated from differentiated cultures of human pluripotent stem cells, but the process is inefficient and requires cell sorting to obtain a highly enriched population. No specific method for directed differentiation of human pluripotent cells toward neural crest stem cells has yet been reported. This severely restricts the utility of these cells as a model for disease and development and for more applied purposes such as cell therapy and tissue engineering.
View Article and Find Full Text PDFBackground: FGF signalling regulates numerous aspects of early embryo development. During gastrulation in amniotes, epiblast cells undergo an epithelial to mesenchymal transition (EMT) in the primitive streak to form the mesoderm and endoderm. In mice lacking FGFR1, epiblast cells in the primitive streak fail to downregulate E-cadherin and undergo EMT, and cell migration is inhibited.
View Article and Find Full Text PDFBackground: Systems Biology research tools, such as Cytoscape, have greatly extended the reach of genomic research. By providing platforms to integrate data with molecular interaction networks, researchers can more rapidly begin interpretation of large data sets collected for a system of interest. BioNetBuilder is an open-source client-server Cytoscape plugin that automatically integrates molecular interactions from all major public interaction databases and serves them directly to the user's Cytoscape environment.
View Article and Find Full Text PDFKnowledge of the molecular mechanisms regulating cell ingression, epithelial-mesenchymal transition and migration movements during amniote gastrulation is steadily improving. In the frog and fish embryo, Wnt5 and Wnt11 ligands are expressed around the blastopore and play an important role in regulating cell movements associated with gastrulation. In the chicken embryo, although Wnt5a and Wnt5b are expressed in the primitive streak, the known Wnt11 gene is expressed in paraxial and intermediate mesoderm, and in differentiated myocardial cells, but not in the streak.
View Article and Find Full Text PDFMyocardin, a serum response factor cofactor, plays an important role in regulating heart and smooth muscle development. To investigate myocardin function during early stages of heart development, we isolated the chicken orthologue of myocardin and characterized its expression between Hamburger and Hamilton stages 3 and 15. At stage 4, myocardin transcripts are detected in the lateral and extraembryonic mesoderm, become progressively localized to the precardiac mesoderm and the differentiated myocardium and are also seen in smooth muscle cells of the developing vascular plexus.
View Article and Find Full Text PDFDuring embryonic development, the first blood vessels are formed through the aggregation and subsequent assembly of angioblasts (endothelial precursors) into a network of endothelial tubes, a process known as vasculogenesis. These first vessels generally form in mesoderm that is adjacent to endodermal tissue. Although specification of the angioblast lineage is independent of endoderm interactions, a signal from the endoderm is necessary for angioblasts to assemble into a vascular network and to undergo vascular tube formation.
View Article and Find Full Text PDFThe vertebrate liver and heart arise from adjacent cell layers in the anterior lateral (AL) endoderm and mesoderm of late gastrula embryos, and the earliest stages of liver and heart development are interrelated through reciprocal tissue interactions. Although classical embryological studies performed several decades ago in chick and quail defined the timing of hepatogenic induction in birds and the important role for cardiogenic mesoderm in this process, almost nothing is known about the molecular aspects of avian liver development. Here we use in vivo and explantation assays to investigate tissue interactions and signaling pathways regulating Hex, a homeobox gene required for liver development, and the earliest stages of hepatogenesis in the chick embryo.
View Article and Find Full Text PDFDespite the increasing quality and quantity of genomic sequence that is available to researchers, predicting gene function from sequence information remains a challenge. One method for obtaining rapid insight into potential functional roles of novel genes is through gene expression mapping. We have performed a high throughput whole-mount in situ hybridization (ISH) screen with chick embryos to identify novel, differentially expressed genes.
View Article and Find Full Text PDFThe homeobox gene Hex is expressed in multiple cell types during embryogenesis and is required for liver and monocyte development. Hex is expressed in the foregut region of late gastrula avian and mammalian embryos in a pattern that overlaps with expression of bone morphogenetic proteins (BMPs). Here we investigate the relationship between BMP signaling and Hex gene expression.
View Article and Find Full Text PDFCardiac troponin T (cTNT) is a component of the troponin complex, which confers calcium sensitivity to contraction in skeletal and cardiac muscle. Although it is thought that most components of the contractile myofibril are expressed exclusively in differentiated muscle cells, we observed that mRNAs coding for cTNT were detectable in explanted late gastrula mesoderm at least 12 hr before cardiac myocyte differentiation. We therefore conducted a detailed analysis of cTNT gene expression in the early chick embryo.
View Article and Find Full Text PDF