Publications by authors named "Tatiana A Mishchenko"

Since its discovery more than 100 years ago, photodynamic therapy (PDT) has become a potent strategy for the treatment of many types of cancer [...

View Article and Find Full Text PDF

Targeted drug delivery for primary brain tumors, particularly gliomas, is currently a promising approach to reduce patient relapse rates. The use of substitutable scaffolds, which enable the sustained release of clinically relevant doses of anticancer medications, offers the potential to decrease the toxic burden on the patient's organism while also enhancing their quality of life and overall survival. Upconversion nanoparticles (UCNPs) are being actively explored as promising agents for detection and monitoring of tumor growth, and as therapeutic agents that can provide isolated therapeutic effects and enhance standard chemotherapy.

View Article and Find Full Text PDF

Introduction: Immunogenic cell death (ICD) has emerged as a novel option for cancer immunotherapy. The key determinants of ICD encompass antigenicity (the presence of antigens) and adjuvanticity, which involves the release of damage-associated molecular patterns (DAMPs) and various cytokines and chemokines. CX3CL1, also known as neurotactin or fractalkine, is a chemokine involved in cellular signalling and immune cell interactions.

View Article and Find Full Text PDF
Article Synopsis
  • The concept of immunogenic cell death (ICD) is crucial for developing new anti-cancer immunotherapies, as it helps eliminate cancer cells and sparks long-lasting immune responses to prevent recurrence.
  • Photodynamic therapy (PDT) triggers ICD by using a light-sensitive dye that, when activated by light, produces reactive oxygen species that kill cancer cells and induce ICD.
  • The article provides detailed protocols for optimizing PDT, assessing ICD in vitro, and evaluating it in various tumor mouse models, ultimately aiming to enhance the effectiveness of cancer immunotherapies.
View Article and Find Full Text PDF

Glioma is the most common primary brain tumor, characterized by a consistently high patient mortality rate and a dismal prognosis affecting both survival and quality of life. Substantial evidence underscores the vital role of the immune system in eradicating tumors effectively and preventing metastasis, underscoring the importance of cancer immunotherapy which could potentially address the challenges in glioma therapy. Although glioma immunotherapies have shown promise in preclinical and early-phase clinical trials, they face specific limitations and challenges that have hindered their success in further phase III trials.

View Article and Find Full Text PDF

Immunogenic cell death (ICD) arouses great interest in targeting glioma, the most common primary brain tumor, to achieve boosted immunotherapy. We discuss the unexpected findings on the induction of Th17 immunity by ICD and propose the best design for dendritic cell (DC)-based vaccines loaded with whole glioma lysates obtained after ICD inducers.

View Article and Find Full Text PDF

Research in the past decade on immunogenic cell death (ICD) has shown that the immunogenicity of dying tumor cells is crucial for effective anticancer therapy. ICD induction leads to the emission of specific damage-associated molecular patterns (DAMPs), which act as danger signals and as adjuvants to activate specific anti-tumor immune responses, leading to the elimination of tumor cells and the formation of long-term immunological memory. ICD can be triggered by many anticancer treatment modalities, including photodynamic therapy (PDT).

View Article and Find Full Text PDF

Astrocytes serve many functions in the brain related to maintaining nerve tissue homeostasis and regulating neuronal function, including synaptic transmission. It is assumed that astrocytes are crucial players in determining the physiological or pathological outcome of the brain aging process and the development of neurodegenerative diseases. Therefore, studies on the peculiarities of astrocyte physiology and interastrocytic signaling during aging are of utmost importance.

View Article and Find Full Text PDF

Sleep-wake cycle disorders most often accompany the elderly and are frequently associated with the development of neurodegenerative processes, primarily Alzheimer's disease. Sleep disturbances can be diagnosed in patients with AD even before the onset of memory and cognitive impairment, and become more pronounced as the disease progresses. Therefore, the expansion of our knowledge of how sleep relates to AD pathogenesis needs to be addressed as soon as possible.

View Article and Find Full Text PDF

Brain hypoxia remains an Achilles' heel for public health that must be urgently addressed. Hypoxic damage affects both neurons and glial cells, particularly astrocytes, which are in close dynamic bi-directional communication, and are organized in plastic and tightly regulated networks. However, astroglial networks have received limited attention regarding their influence on the adaptive functional rearrangements of neural networks to oxygen deficiency.

View Article and Find Full Text PDF

Brain tissue reconstruction posttraumatic injury remains a long-standing challenge in neurotransplantology, where a tissue-engineering construct (scaffold, SC) with specific biochemical properties is deemed the most essential building block. Such three-dimensional (3D) hydrogel scaffolds can be formed using brain-abundant endogenous hyaluronic acid modified with glycidyl methacrylate by employing our proprietary photopolymerisation technique. Herein, we produced 3D hyaluronic scaffolds impregnated with neurotrophic factors (BDNF, GDNF) possessing 600 kPa Young's moduli and 336% swelling ratios.

View Article and Find Full Text PDF

Currently, the role of the neurotrophic factors BDNF and GDNF in maintaining the brain's resistance to the damaging effects of hypoxia and functional recovery of neural networks after exposure to damaging factors are actively studied. The assessment of the effect of an increase in the level of these neurotrophic factors in brain tissues using genetic engineering methods on the resistance of laboratory animals to hypoxia may pave the way for the future clinical use of neurotrophic factors BDNF and GDNF in the treatment of hypoxic damage. This study aimed to evaluate the antihypoxic and neuroprotective properties of BDNF and GDNF expression level increase using adeno-associated viral vectors in modeling hypoxia in vivo.

View Article and Find Full Text PDF

The high prevalence of diagnosed cases of severe neurological disorders, a significant proportion of which are epilepsy, contributes to a high level of mortality and disability in the population. Neurotrophic factors BDNF and GNDF are considered promising agents aimed at increasing the central nervous system's adaptive potential for the development of the epileptiform activity. Despite the pronounced neuroprotective and anticonvulsant potential, an appropriate way to stimulate these endogenous signaling molecules with minimal risk of side effects remains an open question.

View Article and Find Full Text PDF

Glioma is the most common brain tumor, for which no significant improvement in life expectancy and quality of life is yet possible. The creation of stable fluorescent glioma cell lines is a promising tool for in-depth studies of the molecular mechanisms of glioma initialization and pathogenesis, as well as for the development of new anti-cancer strategies. Herein, a new fluorescent glioma GL261-kat cell line stably expressing a far-red fluorescent protein (TurboFP635; Katushka) was generated and characterized, and then validated in a mouse orthotopic glioma model.

View Article and Find Full Text PDF

The current efforts in photodynamic therapy (PDT) of brain cancer are focused on the development of novel photosensitizers with improved photodynamic properties, targeted specific localization, and sensitivity to the irradiation dose, ensuring the effectiveness of PDT with fewer side effects for normal nerve tissue. Here, we characterize the effects of four photosensitizers of the tetracyanotetra(aryl)porphyrazine group (-) on the functional activity of neuron-glial networks in primary hippocampal cultures in their application in normal conditions and under PDT. The data revealed that the application of - leads to a significant decrease in the main parameters of the functional calcium activity of neuron-glial networks and pronounced changes in the network characteristics.

View Article and Find Full Text PDF

Despite the significant relevance of photodynamic therapy (PDT) as an efficient strategy for primary and adjuvant anticancer treatment, several challenges compromise its efficiency. In order to develop an "ideal photosensitizer" and the requirements applied to photosensitizers for PDT, there is still a need for new photodynamic agents with improved photophysical and photobiological properties. In this study, we performed a detailed characterization of two tetracyanotetra(aryl)porphyrazine dyes with 4-biphenyl () and 4-diethylaminophenyl () groups in the periphery of the porphyrazine macrocycle.

View Article and Find Full Text PDF

The immunogenicity of dying cancer cells determines the efficacy of anti-cancer therapy. Photodynamic therapy (PDT) can induce immunogenic cell death (ICD), which is characterized by the emission of damage-associated molecular patterns (DAMPs) from dying cells. This emission can trigger effective anti-tumor immunity.

View Article and Find Full Text PDF

The contribution of many neuronal kinases to the adaptation of nerve cells to ischemic damage and their effect on functional neural network activity has not yet been studied. The aim of this work is to study the role of the four kinases belonging to different metabolic cascades (SRC, Ikkb, eEF2K, and FLT4) in the adaptive potential of the neuron-glial network for modeling the key factors of ischemic damage. We carried out a comprehensive study on the effects of kinases blockade on the viability and network functional calcium activity of nerve cells under ischemic factor modeling in vitro.

View Article and Find Full Text PDF

Photodynamic therapy (PDT) is widely used in cancer treatment; however, several challenges compromise its efficiency. We propose a synergistic action between PDT and ferroptotic cell death. PDT acts as a source of reactive oxygen species for the Fenton reaction, which may reinforce ferroptosis induction and increase PDT efficacy in anticancer therapy.

View Article and Find Full Text PDF

The past decade has witnessed major breakthroughs in cancer immunotherapy. This development has been largely motivated by cancer cell evasion of immunological control and consequent tumor resistance to conventional therapies. Immunogenic cell death (ICD) is considered one of the most promising ways to achieve total tumor cell elimination.

View Article and Find Full Text PDF

Background: Immunotherapy represents the future of clinical cancer treatment. The type of cancer cell death determines the antitumor immune response and thereby contributes to the efficacy of anticancer therapy and long-term survival of patients. Induction of immunogenic apoptosis or necroptosis in cancer cells does activate antitumor immunity, but resistance to these cell death modalities is common.

View Article and Find Full Text PDF

Whether and under what conditions astrocytes can mount a collective network response has recently become one of the central questions in neurobiology. Here, we address this problem, investigating astrocytic reactions to different biochemical stimuli and ischemic-like conditions in vitro. Identifying an emergent astrocytic network is based on a novel mathematical approach that extracts calcium activity from time-lapse fluorescence imaging and estimates the connectivity of astrocytes.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a widespread chronic neurodegenerative pathology characterized by synaptic dysfunction, partial neuronal death, cognitive decline and memory impairments. The major hallmarks of AD are extracellular senile amyloid plaques formed by various types of amyloid proteins (Aβ) and the formation and accumulation of intracellular neurofibrillary tangles. However, there is a lack of relevant experimental models for studying changes in neural network activity, the features of intercellular signaling or the effects of drugs on the functional activity of nervous cells during AD development.

View Article and Find Full Text PDF

Background: Anti-cancer therapy is more successful when it can also induce an immunogenic form of cancer cell death (ICD). Therefore, when developing new treatment strategies, it is extremely important to choose methods that induce ICD and thereby activate anti-tumor immune response leading to the most effective destruction of tumor cells. The aim of this work was to analyze whether the clinically widely used photosensitizers, photosens (PS) and photodithazine (PD), can induce ICD when used in photodynamic therapy (PDT).

View Article and Find Full Text PDF

Glial cell line-derived neurotrophic factor (GDNF) has a pronounced neuroprotective effect in various nervous system pathologies, including ischaemic brain damage and neurodegenerative diseases. In this work, we studied the effect of GDNF on the ultrastructure and functional activity of neuron-glial networks during acute hypoxic exposure, a key damaging factor in numerous brain pathologies. We analysed the molecular mechanisms most likely involved in the positive effects of GDNF.

View Article and Find Full Text PDF