Transition-metal-doped carbon catalysts are promising Pt-free alternatives for low-temperature fuel cells. They are frequently obtained from sacrificial N-rich zeolitic imidazolate frameworks (ZIFs) doped with Co and Fe. The optimal low loading of metals has to be achieved to guarantee the competitive efficiency and facilitate an inquiry into the mechanism of their catalytic activity.
View Article and Find Full Text PDFBiomass processing wastes (humins) are anticipated to become a large-tonnage solid waste in the near future, owing to the accelerated development of renewable technologies based on utilization of carbohydrates. In this work, the utility of humins as a feedstock for the production of activated carbon by various methods (pyrolysis, physical and chemical activation, or combined approaches) was evaluated. The obtained activated carbons were tested as potential electrode materials for supercapacitor applications and demonstrated combined micro- and mesoporous structures with a good capacitance of 370 F g (at a current density of 0.
View Article and Find Full Text PDFBackground: Iron oxide nanoparticles have numerous and versatile biological properties, ranging from direct and immediate biochemical effects to prolonged influences on tissues. Most applications have strict requirements with respect to the chemical and physical properties of such agents. Therefore, developing rational design methods of synthesis of iron oxide nanoparticles remains of vital importance in nanobiomedicine.
View Article and Find Full Text PDF