Hydrogen peroxide (HO) plays an important role in modulating cell signaling and homeostasis in live organisms. The HyPer family of genetically encoded indicators allows the visualization of HO dynamics in live cells within a limited field of view. The visualization of HO within a whole organism with a single cell resolution would benefit from a slowly reducible fluorescent indicator that integrates the HO concentration over desired time scales.
View Article and Find Full Text PDFThe NTnC genetically encoded calcium indicator has an advantageous design because of its smaller size, GFP-like N- and C-terminal ends and two-fold reduced number of calcium binding sites compared with widely used indicators from the GCaMP family. However, NTnC has an inverted and modest calcium response and a low temporal resolution. By replacing the mNeonGreen fluorescent part in NTnC with EYFP, we engineered an NTnC-like indicator, referred to as YTnC, that had a positive and substantially improved calcium response and faster kinetics.
View Article and Find Full Text PDFGenetically encoded calcium indicators (GECIs) are mainly represented by two- or one-fluorophore-based sensors. One type of two-fluorophore-based sensor, carrying Opsanus troponin C (TnC) as the Ca-binding moiety, has two binding sites for calcium ions, providing a linear response to calcium ions. One-fluorophore-based sensors have four Ca-binding sites but are better suited for in vivo experiments.
View Article and Find Full Text PDF