Members of the family have non-enveloped tailless icosahedral virions with a protein-rich internal lipid membrane. The genome is a linear double-stranded DNA of about 30 kbp with inverted terminal repeats and terminal proteins. The capsid has a pseudo triangulation 28 symmetry and is built of two major capsid protein types.
View Article and Find Full Text PDFAlthough we know the generally appreciated significant roles of microbes in sea ice and polar waters, detailed studies of virus-host systems from such environments have been so far limited by only a few available isolates. Here, we investigated infectivity under various conditions, infection cycles, and genetic diversity of the following Antarctic sea ice bacteriophages: Antarctic GD virus 1 (PANV1), Antarctic JLT virus 2 (PANV2), Antarctic BD virus 1 (OANV1), and Antarctic DB virus 2 (OANV2). The phages infect common sea ice bacteria belonging to the genera or .
View Article and Find Full Text PDFThe archaeal tailed viruses (arTV), evolutionarily related to tailed double-stranded DNA (dsDNA) bacteriophages of the class Caudoviricetes, represent the most common isolates infecting halophilic archaea. Only a handful of these viruses have been genomically characterized, limiting our appreciation of their ecological impacts and evolution. Here, we present 37 new genomes of haloarchaeal tailed virus isolates, more than doubling the current number of sequenced arTVs.
View Article and Find Full Text PDFEstablished in 2016, the family Pleolipoviridae comprises globally distributed archaeal viruses that produce pleomorphic particles. Pseudo-spherical enveloped virions of pleolipoviruses are membrane vesicles carrying a nucleic acid cargo. The cargo can be either a single-stranded or double-stranded DNA molecule, making this group the first family introduced in the 10 Report on Virus Taxonomy including both single-stranded and double-stranded DNA viruses.
View Article and Find Full Text PDFCertain pleomorphic archaeal viruses are highly infectious even at saturated salt. These viruses belong to the genus Betapleolipovirus of the recently described archaeal virus family Pleolipoviridae. Pleolipoviruses comprise single-stranded or double-stranded, circular or linear DNA genomes that share countless homologues among various archaeal genetic elements.
View Article and Find Full Text PDFExtremely halophilic are the only known hosts for pleolipoviruses which are pleomorphic non-lytic viruses resembling cellular membrane vesicles. Recently, pleolipoviruses have been acknowledged by the International Committee on Taxonomy of Viruses (ICTV) as the first virus family that contains related viruses with different DNA genomes. Genomic diversity of pleolipoviruses includes single-stranded and double-stranded DNA molecules and their combinations as linear or circular molecules.
View Article and Find Full Text PDFMembers of the virus family include both archaeal viruses and bacteriophages that possess a tailless icosahedral capsid with an internal membrane. The genera and comprise viruses that infect halophilic euryarchaea, whereas viruses of thermophilic bacteria belong to the genus . Both sequence-based and structural clustering of the major capsid proteins and ATPases of sphaerolipoviruses yield three distinct clades corresponding to these three genera.
View Article and Find Full Text PDFHypersaline environments that are subject to salinity changes are particularly rich in viruses. Here we report a newly isolated archaeal halovirus, Haloarcula hispanica pleomorphic virus 3 (HHPV3). Its reproduction significantly retards host growth and decreases cell viability without causing lysis.
View Article and Find Full Text PDFUnlabelled: Despite their high genomic diversity, all known viruses are structurally constrained to a limited number of virion morphotypes. One morphotype of viruses infecting bacteria, archaea, and eukaryotes is the tailless icosahedral morphotype with an internal membrane. Although it is considered an abundant morphotype in extreme environments, only seven such archaeal viruses are known.
View Article and Find Full Text PDFHypersaline environments around the world are dominated by archaea and their viruses. To date, very little is known about these viruses and their interaction with the host strains when compared to bacterial and eukaryotic viruses. We performed the first culture-dependent temporal screening of haloarchaeal viruses and their hosts in the saltern of Samut Sakhon, Thailand, during two subsequent years (2009, 2010).
View Article and Find Full Text PDFIsolated archaeal viruses comprise only a few percent of all known prokaryotic viruses. Thus, the study of viruses infecting archaea is still in its early stages. Here we summarize the most recent discoveries of archaeal viruses utilizing a virion-centered view.
View Article and Find Full Text PDFBiomimetic architectural assembly of clay nanotube shells on yeast cells was demonstrated producing viable artificial hybrid inorganic-cellular structures (armoured cells). These modified cells were preserved for one generation resulting in the intact second generation of cells with delayed germination.
View Article and Find Full Text PDF