KCNQ1 potassium channels play a pivotal role in the physiology and pathophysiology of several human excitable and epithelial tissues. The latest cryo-electron microscopy (cryo-EM) structures provide unique insights into channel function and pharmacology, opening avenues for different therapeutic strategies against human diseases associated with KCNQ1 mutations. However, these structures also raise fundamental questions about the mechanisms of ion permeation.
View Article and Find Full Text PDFKCNQ1 voltage-gated K+ channels are involved in a wide variety of fundamental physiological processes and exhibit the unique feature of being markedly inhibited by external K+. Despite the potential role of this regulatory mechanism in distinct physiological and pathological processes, its exact underpinnings are not well understood. In this study, using extensive mutagenesis, molecular dynamics simulations, and single-channel recordings, we delineate the molecular mechanism of KCNQ1 modulation by external K+.
View Article and Find Full Text PDF