Energy dispersive X-ray spectrometry is used to extract a quantitative 3D composition profile of heterostructured nanowires. The analysis of hypermaps recorded along a limited number of projections, with a preliminary calibration of the signal associated with each element, is compared to the intensity profiles calculated for a model structure with successive shells of circular, elliptic, or faceted cross sections. This discrete tomographic technique is applied to II-VI nanowires grown by molecular beam epitaxy, incorporating ZnTe and CdTe and their alloys with Mn and Mg, with typical size down to a few nanometers and Mn or Mg content as low as 10%.
View Article and Find Full Text PDFGold-catalyzed ZnTe nanowires were grown at low temperature by molecular beam epitaxy on a ZnTe(111) B buffer layer, under different II/VI flux ratios, including with CdTe insertions. High-resolution electron microscopy and energy-dispersive X-ray spectroscopy (EDX) gave information about the crystal structure, polarity, and growth mechanisms. We observe, under stoichiometric conditions, the simultaneous presence of zinc-blende and wurtzite nanowires spread homogeneously on the same sample.
View Article and Find Full Text PDFEpitaxial semiconductor quantum dots are particularly promising as realistic single-photon sources for their compatibility with manufacturing techniques and possibility to be implemented in compact devices. Here, we demonstrate for the first time single-photon emission up to room temperature from an epitaxial quantum dot inserted in a nanowire, namely a CdSe slice in a ZnSe nanowire. The exciton and biexciton lines can still be resolved at room temperature and the biexciton turns out to be the most appropriate transition for single-photon emission due to a large nonradiative decay of the bright exciton to dark exciton states.
View Article and Find Full Text PDFWe present a high-temperature single-photon source based on a quantum dot inside a nanowire. The nanowires were grown by molecular beam epitaxy in the vapor-liquid-solid growth mode. We utilize a two-step process that allows a thin, defect-free ZnSe nanowire to grow on top of a broader, cone-shaped nanowire.
View Article and Find Full Text PDFPhys Rev Lett
January 2009
The evolution of the magnetization in (Cd,Mn)Te quantum wells after a short pulse of magnetic field was determined from the giant Zeeman shift of spectroscopic lines. The dynamics in the absence of a static magnetic field was found to be up to 3 orders of magnitude faster than that at 1 T. Hyperfine interaction and strain are mainly responsible for the fast decay.
View Article and Find Full Text PDFZh Nevrol Psikhiatr Im S S Korsakova
September 2009
Short-term and long-term outcomes of basal brain activity were estimated in 20 epileptic patients with a medical history of callosotomy. Patients with malignant courses selected for callosotomy retained the high capacity of cerebral electric activity after surgery. In spite of limitations of bilateral synchronized irradiation of electric discharges in the brain, patients had the high power of cerebral electric genesis.
View Article and Find Full Text PDFCdSe/ZnSe quantum dot formation is investigated by studying different steps of the growth. To precisely control the critical thickness of CdSe grown on a ZnSe buffer layer, the CdSe self-regulated growth rate in atomic layer epitaxy growth mode is determined by reflection high-energy electron diffraction (RHEED) measurements for a temperature range between 180 and 280 °C. Then, the two-dimensional-three-dimensional (2D-3D) transition of a strained CdSe layer on (001)-ZnSe induced by the use of amorphous selenium is studied.
View Article and Find Full Text PDFThe emerging field of spintronics would be dramatically boosted if room-temperature ferromagnetism could be added to semiconductor nanostructures that are compatible with silicon technology. Here, we report a high-TC (>400K) ferromagnetic phase of (Ge,Mn) epitaxial layer. The manganese content is 6%, and careful structural and chemical analyses show that the Mn distribution is strongly inhomogeneous: we observe eutectoid growth of well-defined Mn-rich nanocolumns surrounded by a Mn-poor matrix.
View Article and Find Full Text PDFWe study the absorption by neutral excitons and positively charged excitons (trions) following a femtosecond, circularly polarized, resonant pump pulse. Three populations are involved: free holes, excitons, and trions, all exhibiting transient spin polarization. In particular, a polarization of the gas of free holes is created by the formation of trions.
View Article and Find Full Text PDFA strong influence of illumination and electric bias on the Curie temperature and saturation value of the magnetization is demonstrated for semiconductor structures containing a modulation-doped p-type Cd(0.96)Mn(0.04)Te quantum well placed in various built-in electric fields.
View Article and Find Full Text PDFThe dependence of the optical absorption spectrum of a semiconductor quantum well on two-dimensional electron concentration n(e) is studied using CdTe samples. The trion peak (X-) seen at low n(e) evolves smoothly into the Fermi edge singularity at high n(e). The exciton peak (X) moves off to high energy, weakens, and disappears.
View Article and Find Full Text PDFPhys Rev B Condens Matter
August 1996
Phys Rev B Condens Matter
December 1994
Phys Rev B Condens Matter
March 1991
Phys Rev B Condens Matter
December 1990