Work-related musculoskeletal disorders (WMSDs) are often caused by repetitive lifting, making them a significant concern in occupational health. Although wearable assist devices have become the norm for mitigating the risk of back pain, most spinal assist devices still possess a partially rigid structure that impacts the user's comfort and flexibility. This paper addresses this issue by presenting a smart textile-actuated spine assistance robotic exosuit (SARE), which can conform to the back seamlessly without impeding the user's movement and is incredibly lightweight.
View Article and Find Full Text PDFIn this study, we describe the most ultralightweight living legged robot to date that makes it a strong candidate for a search and rescue mission. The robot is a living beetle with a wireless electronic backpack stimulator mounted on its thorax. Inheriting from the living insect, the robot employs a compliant body made of soft actuators, rigid exoskeletons, and flexure hinges.
View Article and Find Full Text PDFIn flight, many insects fold their forelegs tightly close to the body, which naturally decreases drag or air resistance. However, flying beetles stretch out their forelegs for some reason. Why do they adopt this posture in flight? Here, we show the role of the stretched forelegs in flight of the beetle Using leg motion tracking and electromyography in flight, we found that the forelegs were voluntarily swung clockwise in yaw to induce counter-clockwise rotation of the body for turning left, and vice versa.
View Article and Find Full Text PDFThe mechanisms and principles of insect flight have long been investigated by researchers working on micro and nano air vehicles (MAVs/NAVs). However, studies of insect flight maneuvers require high speed filming and high spatial resolution in a small experimental space, or the tethering of the insect to a fixed place. Under such artificial conditions, the insects may deviate its flying behavior from that of regular flight.
View Article and Find Full Text PDFIn contrast to major flight muscles in the Mecynorrhina torquata beetle, the third axillary (3Ax) muscle is a minor flight muscle that uniquely displays a powerful mechanical function despite its considerably small volume, ∼1/50 that of a major flight muscle. The 3Ax muscle contracts relatively slowly, and in flight strongly pulls the beating wing to attenuate the stroke amplitude. This attenuation leads to left-right turning in flight or wing folding to cease flying.
View Article and Find Full Text PDFIn this paper, a microthermograph, temperature mapping with high spatial resolution, was established using luminescent molecules embedded ultrathin polymeric films (nanosheets), and demonstrated in a living small animal to map out and visualize temperature shift due to animal's muscular activity. Herein, we report super flexible and self-adhesive (no need of glue) nanothermosensor consisting of stacked two different polymeric nanosheets with thermosensitive (Eu-tris (dinaphthoylmethane)-bis-trioctylphosphine oxide: EuDT) and insensitive (Rhodamine 800) dyes being embedded. Such stacked nanosheets allow for the ratiometric thermometry, with which the undesired luminescence intensity shift due to focal drift or animal's z-axis displacement is eliminated and the desired intensity shift solely due to the temperature shift of the sample (living muscle) can be acquired.
View Article and Find Full Text PDFA highly active alternative to Pt electrocatalysts for the oxygen reduction reaction (ORR), which is the cathode-electrode reaction of fuel cells, is sought for higher fuel-cell performance. Our theoretical modelling reveals that B-doped Pd (Pd-B) weakens the absorption of ORR intermediates with nearly optimal binding energy by lowering the barrier associated with O2 dissociation, suggesting Pd-B should be highly active for ORR. In fact, Pd-B, facile synthesized by an electroless deposition process, exhibits 2.
View Article and Find Full Text PDFTesting hypotheses of neuromuscular function during locomotion ideally requires the ability to record cellular responses and to stimulate the cells being investigated to observe downstream behaviors [1]. The inability to stimulate in free flight has been a long-standing hurdle for insect flight studies. The miniaturization of computation and communication technologies has delivered ultra-small, radio-enabled neuromuscular recorders and stimulators for untethered insects [2-8].
View Article and Find Full Text PDFIn this study, a biological microactuator was demonstrated by closed-loop motion control of the front leg of an insect (Mecynorrhina torquata, beetle) via electrical stimulation of the leg muscles. The three antagonistic pairs of muscle groups in the front leg enabled the actuator to have three degrees of freedom: protraction/retraction, levation/depression, and extension/flexion. We observed that the threshold amplitude (voltage) required to elicit leg motions was approximately 1.
View Article and Find Full Text PDF