Publications by authors named "Tasuku Tsukamoto"

Background: Canonical Wnt signaling is involved in a variety of biological processes including stem cell renewal and differentiation, embryonic development, and tissue regeneration. Previous studies reported the stage-specific roles of the Wnt signaling in heart development. Canonical Wnt signal activation by recombinant Wnt3a in the early phase of differentiation enhances the efficiency of myocardial cell production from pluripotent stem cells.

View Article and Find Full Text PDF

Dysregulation of nicotinamide adenine dinucleotide (NAD +) metabolism contributes to the initiation and progression of age-associated diseases, including chronic kidney disease (CKD). Nicotinamide N-methyltransferase (NNMT), a nicotinamide (NAM) metabolizing enzyme, regulates both NAD + and methionine metabolism. Although NNMT is expressed abundantly in the kidney, its role in CKD and renal fibrosis remains unclear.

View Article and Find Full Text PDF

Disease-modifying therapies, such as neuroprotective and neurorestorative interventions, are strongly desired for Alzheimer's disease (AD) treatment. Several studies have suggested that histone deacetylase 2 (HDAC2) inhibition can exhibit disease-modifying effects in AD patients. However, whether HDAC2 inhibition shows neuroprotective and neurorestorative effects under neuropathic conditions, such as amyloid β (Aβ)-elevated states, remains poorly understood.

View Article and Find Full Text PDF

Heart disease is the most common cause of death in developed countries, but the medical treatments for heart failure remain limited. In this context, the development of cardiac regeneration therapy for severe heart failure is important. Owing to their unique characteristics, including multiple differentiation and infinitive self-renewal, pluripotent stem cells can be considered as a novel source for regenerative medicine.

View Article and Find Full Text PDF

Producing a sufficient number of cardiomyocytes from pluripotent stem cells has been of great demand for cardiac regeneration therapy. However, it remains challenging to efficiently differentiate cardiomyocytes with low costs. Reportedly, granulocyte colony-stimulating factor (G-CSF) receptor (GCSFR) signaling activates signal transducers and activators of transcription (STAT) signaling and enhances cardiac differentiation from embryonic stem cells or induced pluripotent stem cells (iPSCs).

View Article and Find Full Text PDF

Pseudomonas aeruginosa is one of the most common and clinically important pathogens because of its resistance to a wide variety of antibiotics. A number of treatments of P. aeruginosa have been developed, but there is still no definitive one.

View Article and Find Full Text PDF