De novo DNA methylation (DNAme) during mouse oogenesis occurs within transcribed regions enriched for H3K36me3. As many oocyte transcripts originate in long terminal repeats (LTRs), which are heterogeneous even between closely related mammals, we examined whether species-specific LTR-initiated transcription units (LITs) shape the oocyte methylome. Here we identify thousands of syntenic regions in mouse, rat, and human that show divergent DNAme associated with private LITs, many of which initiate in lineage-specific LTR retrotransposons.
View Article and Find Full Text PDFBackground: Allele-specific transcriptional regulation, including of imprinted genes, is essential for normal mammalian development. While the regulatory regions controlling imprinted genes are associated with DNA methylation (DNAme) and specific histone modifications, the interplay between transcription and these epigenetic marks at allelic resolution is typically not investigated genome-wide due to a lack of bioinformatic packages that can process and integrate multiple epigenomic datasets with allelic resolution. In addition, existing ad-hoc software only consider SNVs for allele-specific read discovery.
View Article and Find Full Text PDFWhole-genome shotgun bisulfite sequencing (WG-SBS) is currently the most powerful tool available for understanding genomewide cytosine methylation with single-base resolution; however, the high sequencing cost limits its widespread application, particularly for mammalian genomes. We mapped high- to low-coverage SBS short reads of mouse and human female developing germ cells to consensus sequences of repetitive elements that were multiplied in the respective host genome. This mapping strategy effectively identified active and evolutionarily young retrotransposon subfamilies and centromeric satellite repeats that were resistant to DNA demethylation during the investigated progressive stages of germ cell development.
View Article and Find Full Text PDFThe germ line reprogramming barrier resets parental epigenetic modifications according to sex, conferring totipotency to mammalian embryos upon fertilization. However, it is not known whether epigenetic errors are committed during germ line reprogramming that are then transmitted to germ cells, and consequently to offspring. We addressed this question in the present study by performing a genome-wide DNA methylation analysis using a target postbisulfite sequencing method in order to identify DNA methylation errors in cloned mouse sperm.
View Article and Find Full Text PDF