The Koper model is a prototype system with two slow variables and one fast variable that possesses small-amplitude oscillations (SAOs), large-amplitude oscillations (LAOs), and mixed-mode oscillations (MMOs). In this article, we study a pair of identical Koper oscillators that are symmetrically coupled. Strong symmetry breaking rhythms are presented of the types SAO-LAO, SAO-MMO, LAO-MMO, and MMO-MMO, in which the oscillators simultaneously exhibit rhythms of different types.
View Article and Find Full Text PDFSymmetry-breaking in coupled, identical, fast-slow systems produces a rich, dramatic variety of dynamical behavior-such as amplitudes and frequencies differing by an order of magnitude or more and qualitatively different rhythms between oscillators, corresponding to different functional states. We present a novel method for analyzing these systems. It identifies the key geometric structures responsible for this new symmetry-breaking, and it shows that many different types of symmetry-breaking rhythms arise robustly.
View Article and Find Full Text PDFChimeras are surprising yet important states in which domains of decoherent (asynchronous) and coherent (synchronous) oscillations co-exist. In this article, we report on the discovery of a new class of chimeras, called mixed-amplitude chimera states, in which the structures, amplitudes, and frequencies of the oscillations differ substantially in the decoherent and coherent regions. These mixed-amplitude chimeras exhibit domains of decoherent small-amplitude oscillations (phase waves) coexisting with domains of stable and coherent large-amplitude or mixed-mode oscillations (MMOs).
View Article and Find Full Text PDFThis article presents the delayed loss of stability due to slow passage through Hopf bifurcations in reaction-diffusion equations with slowly-varying parameters, generalizing a well-known result about delayed Hopf bifurcations in analytic ordinary differential equations to spatially-extended systems. We focus on the Hodgkin-Huxley partial differential equation (PDE), the cubic Complex Ginzburg-Landau PDE as an equation in its own right, the Brusselator PDE, and a spatially-extended model of a pituitary clonal cell line. Solutions which are attracted to quasi-stationary states (QSS) sufficiently before the Hopf bifurcations remain near the QSS for long times after the states have become repelling, resulting in a significant delay in the loss of stability and the onset of oscillations.
View Article and Find Full Text PDFWe report on the discovery of a novel class of bursting rhythms, called amplitude-modulated bursting (AMB), in a model for intracellular calcium dynamics. We find that these rhythms are robust and exist on open parameter sets. We develop a new mathematical framework with broad applicability to detect, classify, and rigorously analyze AMB.
View Article and Find Full Text PDFBone morphogen proteins (BMPs) are distributed along a dorsal-ventral (DV) gradient in many developing embryos. The spatial distribution of this signaling ligand is critical for correct DV axis specification. In various species, BMP expression is spatially localized, and BMP gradient formation relies on BMP transport, which in turn requires interactions with the extracellular proteins Short gastrulation/Chordin (Chd) and Twisted gastrulation (Tsg).
View Article and Find Full Text PDFThis article concerns the phenomenon of Mixed-Mode Bursting Oscillations (MMBOs). These are solutions of fast-slow systems of ordinary differential equations that exhibit both small-amplitude oscillations (SAOs) and bursts consisting of one or multiple large-amplitude oscillations (LAOs). The name MMBO is given in analogy to Mixed-Mode Oscillations, which consist of alternating SAOs and LAOs, without the LAOs being organized into burst events.
View Article and Find Full Text PDFRhythmic neuronal oscillations across a broad range of frequencies, as well as spatiotemporal phenomena, such as waves and bumps, have been observed in various areas of the brain and proposed as critical to brain function. While there is a long and distinguished history of studying rhythms in nerve cells and neuronal networks in healthy organisms, the association and analysis of rhythms to diseases are more recent developments. Indeed, it is now thought that certain aspects of diseases of the nervous system, such as epilepsy, schizophrenia, Parkinson's, and sleep disorders, are associated with transitions or disruptions of neurological rhythms.
View Article and Find Full Text PDFThe synthetic construction of intracellular circuits is frequently hindered by a poor knowledge of appropriate kinetics and precise rate parameters. Here, we use generalized modeling (GM) to study the dynamical behavior of topological models of a family of hybrid metabolic-genetic circuits known as "metabolators." Under mild assumptions on the kinetics, we use GM to analytically prove that all explicit kinetic models which are topologically analogous to one such circuit, the "core metabolator," cannot undergo Hopf bifurcations.
View Article and Find Full Text PDFRapid action potential generation - spiking - and alternating intervals of spiking and quiescence - bursting - are two dynamic patterns commonly observed in neuronal activity. In computational models of neuronal systems, the transition from spiking to bursting often exhibits complex bifurcation structure. One type of transition involves the torus canard, which we show arises in a broad array of well-known computational neuronal models with three different classes of bursting dynamics: sub-Hopf/fold cycle bursting, circle/fold cycle bursting, and fold/fold cycle bursting.
View Article and Find Full Text PDFWe study the recently observed phenomena of torus canards. These are a higher-dimensional generalization of the classical canard orbits familiar from planar systems and arise in fast-slow systems of ordinary differential equations in which the fast subsystem contains a saddle-node bifurcation of limit cycles. Torus canards are trajectories that pass near the saddle-node and subsequently spend long times near a repelling branch of slowly varying limit cycles.
View Article and Find Full Text PDFMixed mode oscillations (MMOs) occur when a dynamical system switches between fast and slow motion and small and large amplitude. MMOs appear in a variety of systems in nature, and may be simple or complex. This focus issue presents a series of articles on theoretical, numerical, and experimental aspects of MMOs.
View Article and Find Full Text PDFChanges in behavioral state are typically accompanied by changes in the frequency and spatial coordination of rhythmic activity in the neocortex. In this article, we analyze the effects of neuromodulation on ionic conductances in an oscillating cortical circuit model. The model consists of synaptically-coupled excitatory and inhibitory neurons and supports rhythmic activity in the alpha, beta, and gamma ranges.
View Article and Find Full Text PDFNeuronal mechanisms in nervous systems that keep intersegmental phase lags the same at different frequencies are not well understood. We investigated biophysical mechanisms that permit local pattern-generating circuits in neighboring segments to maintain stable phase differences. We use a modified version of an existing model of the crayfish swimmeret system that is based on three known coordinating neurons and hypothesized intersegmental synaptic connections.
View Article and Find Full Text PDFIn this work, we study a blinking vortex-uniform stream map. This map arises as an idealized, but essential, model of time-dependent convection past concentrated vorticity in a number of fluid systems. The map exhibits a rich variety of phenomena, yet it is simple enough so as to yield to extensive analytical investigation.
View Article and Find Full Text PDF