Publications by authors named "Tassin P"

As nanophotonic devices become increasingly complex, computer simulations of such devices are becoming ever more important. Unfortunately, computer simulations of nanophotonic devices are computationally expensive, especially if many simulations are necessary, e.g.

View Article and Find Full Text PDF

Increasing the interaction between light and mechanical resonators is an ongoing endeavor in the field of cavity optomechanics. Optical microcavities allow for boosting the interaction strength through their strong spatial confinement of the optical field. In this work, we follow this approach by realizing a sub-wavelength-long, free-space optomechanical microcavity on-chip fabricated from an (Al,Ga)As heterostructure.

View Article and Find Full Text PDF

Metasurfaces enable us to control the fundamental properties of light with unprecedented flexibility. However, most metasurfaces realized to date aim at modifying plane waves. While the manipulation of nonplanar wavefronts is encountered in a diverse number of applications, their control using metasurfaces is still in its infancy.

View Article and Find Full Text PDF

Artificially structured metasurfaces make use of specific configurations of subwavelength resonators to efficiently manipulate electromagnetic waves. Additionally, optomechanical metasurfaces have the desired property that their actual configuration may be tuned by adjusting the power of a pump beam, as resonators move to balance pump-induced electromagnetic forces with forces due to elastic filaments or substrates. Although the reconfiguration time of optomechanical metasurfaces crucially determines their performance, the transient dynamics of unit cells from one equilibrium state to another is not understood.

View Article and Find Full Text PDF

The enhancement of optical forces has enabled a variety of technological applications that rely on the optical control of small objects and devices. Unfortunately, optical forces are still too small for the convenient actuation of integrated switches and waveguide couplers. Here we show how the optical gradient force can be enhanced by an order of magnitude by making use of gauge materials inside two evanescently coupled waveguides.

View Article and Find Full Text PDF

Advances in the efficient manipulation of terahertz waves are crucial for the further development of terahertz technology, promising applications in many diverse areas, such as biotechnology and spectroscopy, to name just a few. Due to its exceptional electronic and optical properties, graphene is a good candidate for terahertz electro-absorption modulators. However, graphene-based modulators demonstrated to date are limited in bandwidth due to Fabry-Perot oscillations in the modulators' substrate.

View Article and Find Full Text PDF

Since its inception in 2006, transformation optics has become an established tool to understand and design electromagnetic systems. It provides a geometrical perspective into the properties of light waves without the need for a ray approximation. Most studies have focused on modifying the trajectories of light rays, e.

View Article and Find Full Text PDF

A numerical method combining complex-k band calculations and absorbing boundary conditions for Bloch waves is presented. We use this method to study photonic crystals with Dirac cones. We demonstrate that the photonic crystal behaves as a zero-index medium when excited at normal incidence, but that the zero-index behavior is lost at oblique incidence due to excitation of modes on the flat band.

View Article and Find Full Text PDF

In high energy physics, unknown particles are identified by determining their mass from the Cherenkov radiation cone that is emitted as they pass through the detector apparatus. However, at higher particle momentum, the angle of the Cherenkov cone saturates to a value independent of the mass of the generating particle, making it difficult to effectively distinguish between different particles. Here, we show how the geometric formalism of transformation optics can be applied to describe the Cherenkov cone in an arbitrary anisotropic medium.

View Article and Find Full Text PDF

Metamaterials--or artificial electromagnetic materials--can create media with properties unattainable in nature, but mitigating dissipation is a key challenge for their further development. Here, we demonstrate a low-loss metamaterial by exploiting dark bound states in dielectric inclusions coupled to the external waves by small nonresonant metallic antennas. We experimentally demonstrate a dispersion-engineered metamaterial based on a meta-atom made from alumina, and we show that its resonance has a much larger quality factor than metal-based meta-atoms.

View Article and Find Full Text PDF

We demonstrate how the optical gradient force between two waveguides can be enhanced using transformation optics. A thin layer of double-negative or single-negative metamaterial can shrink the interwaveguide distance perceived by light, resulting in a more than tenfold enhancement of the optical force. This process is remarkably robust to the dissipative loss normally observed in metamaterials.

View Article and Find Full Text PDF

Several classical analogues of electromagnetically induced transparency in metamaterials have been demonstrated. A simple two-resonator model can describe their absorption spectrum qualitatively, but fails to provide information about the scattering properties--e.g.

View Article and Find Full Text PDF

We have recently shown that graphene is unsuitable to replace metals in the current-carrying elements of metamaterials. At the other hand, experiments have demonstrated that a layer of graphene can modify the optical response of a metal-based metamaterial. Here we study this electromagnetic interaction between metamaterials and graphene.

View Article and Find Full Text PDF

Metamaterials are engineered materials composed of small electrical circuits producing novel interactions with electromagnetic waves. Recently, a new class of metamaterials has been created to mimic the behavior of media displaying electromagnetically induced transparency (EIT). Here we introduce a planar EIT metamaterial that creates a very large loss contrast between the dark and radiative resonators by employing a superconducting Nb film in the dark element and a normal-metal Au film in the radiative element.

View Article and Find Full Text PDF

We study the optical force arising when isolated gold nanowire pairs and metamaterials with a gold nanowire pair in the unit cell are illuminated with laser radiation. Firstly, we show that isolated nanowire pairs are subject to much stronger optical forces than nanospheres due to their stronger electric and magnetic dipole resonances. We also investigate the properties of the optical force as a function of the length of the nanowires and of the distance between the nanowires.

View Article and Find Full Text PDF

According to general relativity, the frequency of electromagnetic radiation is altered by the expansion of the universe. This effect-commonly referred to as the cosmological redshift--is of utmost importance for observations in cosmology. Here we show that this redshift can be reproduced on a much smaller scale using an optical analogue inside a dielectric metamaterial with time-dependent material parameters.

View Article and Find Full Text PDF

We consider a degenerate optical parametric oscillator containing a left-handed material. We show that the inclusion of a left-handed material layer allows for controlling the strength and sign of the diffraction coefficient at either the pump or the signal frequency. Subsequently, we demonstrate the existence of stable dissipative structures without diffraction matching, i.

View Article and Find Full Text PDF

We have investigated the transmission and reflection properties of structures incorporating left-handed materials with graded index of refraction. We present an exact analytical solution to Helmholtz' equation for a graded index profile changing according to a hyperbolic tangent function along the propagation direction. We derive expressions for the field intensity along the graded index structure, and we show excellent agreement between the analytical solution and the corresponding results obtained by accurate numerical simulations.

View Article and Find Full Text PDF

We present a planar design of a metamaterial exhibiting electromagnetically induced transparency that is amenable to experimental verification in the microwave frequency band. The design is based on the coupling of a split-ring resonator with a cut-wire in the same plane. We investigate the sensitivity of the parameters of the transmission window on the coupling strength and on the circuit elements of the individual resonators, and we interpret the results in terms of two linearly coupled Lorentzian resonators.

View Article and Find Full Text PDF

We demonstrate theoretically that electromagnetically induced transparency can be achieved in metamaterials, in which electromagnetic radiation is interacting resonantly with mesoscopic oscillators rather than with atoms. We describe novel metamaterial designs that can support a full dark resonant state upon interaction with an electromagnetic beam and we present results of its frequency-dependent effective permeability and permittivity. These results, showing a transparency window with extremely low absorption and strong dispersion, are confirmed by accurate simulations of the electromagnetic field propagation in the metamaterial.

View Article and Find Full Text PDF

We study the spatiotemporal dynamics of spatially extended nonlinear cavities containing a left-handed material. Such materials, which have a negative index of refraction, have been experimentally demonstrated recently, and allow for novel electromagnetic behavior. We show that the insertion of a left-handed material in an optical resonator allows for controlling the value and the sign of the diffraction coefficient in dispersive Kerr resonators and degenerate optical parametric oscillators.

View Article and Find Full Text PDF

We study the coupling between negative diffraction and direct dispersion in a nonlinear ring cavity containing slabs of Kerr nonlinear right-handed and left-handed materials. Within the mean field approximation, we show that a portion of the homogeneous response curve is affected by a three-dimensional modulational instability. We show numerically that the light distribution evolves through a sequence of three-dimensional dissipative structures with different lattice symmetry.

View Article and Find Full Text PDF