Publications by authors named "Tassia Regina de Oliveira"

Leprosy is an infectious disease classified as Neglected Tropical Disease (NTD) by the World Health Organization (WHO). Its diagnosis is challenging, relying on clinical symptoms and invasive procedures. Delays can cause severe physical disability, including hand, foot, and eye impairments.

View Article and Find Full Text PDF

Viral respiratory infections represent a major threat to the population's health globally. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes COVID-19 disease and in some cases the symptoms can be confused with Influenza disease caused by the Influenza A viruses. A simple, fast, and selective assay capable of identifying the etiological agent and differentiating the diseases is essential to provide the correct clinical management to the patient.

View Article and Find Full Text PDF

The world is in a long pandemic period caused by the SARS-CoV-2 virus and massive diagnostic tests to assist efforts to control the spread of the disease and also to avoid new coronavirus variants are still needed. Herein, we propose a simple and accurate saliva-based colorimetric test for the diagnosis of COVID-19. Magnetic beads (MBs) modified with a sequence of single-strand DNA (ssDNA) complementary to the N gene of the SARS-CoV-2 RNA were developed and used for magnetic capture and separation from a complex saliva sample.

View Article and Find Full Text PDF

Fast, sensitive, simple, and cheap sensors are highly desirable to be applied in the health system because they improve point-of-care diagnostics, which can reduce the number of cases of infection or even deaths. In this context, here we report the development of a label-free genosensor using a screen-printed electrode modified with 2D-carbonylated graphitic carbon nitride (CN), poly(diallyldimethylammonium) chloride (PDDA), and glutathione-protected gold nanoparticles (GSH-AuNPs) for photoelectrochemical (PEC) detection of SARS-CoV-2. We also made use of Arduino and 3D printing to miniaturize the sensor device.

View Article and Find Full Text PDF

This paper describes a simple, low-cost, and highly flexible rapid prototyping method to construct electrochemical paper-based analytical device (ePAD) for multiplexed analyte determinations. The ePAD was composed of two electrochemical cell (EC) compartments, separated by hydrophobic barriers of wax, and screen-printed electrodes (SPEs) deposited directly over the surface of the filter paper. The ePAD was entirely constructed using an inexpensive craft cutter printer with no needed of a wax printer.

View Article and Find Full Text PDF

In this work, a biosensor was constructed by physical adsorption of the isolated endophytic fungus Eupenicillium shearii FREI-39 esterase on halloysite, using graphite powder, multi-walled carbon nanotubes and mineral oil for the determination of carbofuran pesticide by inhibition of the esterase using square-wave voltammetry (SWV). Specific esterase activities were determined each 2 days over a period of 15 days of growth in four different inoculation media. The highest specific activity was found on 6th day, with 33.

View Article and Find Full Text PDF

Sepiolite clay mineral was used as a support for the immobilisation of the peroxidase enzyme from ingá-cipó (Inga edulis Mart.) and was used with graphite powder, multi-walled carbon nanotubes (CNTs), mineral oil, and nafion 0.5% (v/v) in the development of a new biosensor for the determination of the antioxidant tert-butylhydroquinone (TBHQ) by square-wave voltammetry (SWV).

View Article and Find Full Text PDF