Congenital heart disease (CHD) is the most common birth defect, requiring invasive surgery often before a child's first birthday. Current materials used during CHD surgery lack the ability to grow, remodel, and regenerate. To solve those limitations, 3D bioprinting is an emerging tool with the capability to create tailored constructs based on patients' own imaging data with the ability to grow and remodel once implanted in children with CHD.
View Article and Find Full Text PDFSurgical treatment of congenital heart defects affecting the right ventricular outflow tract (RVOT) often requires complex reconstruction and multiple reoperations due to structural degeneration and lack of growth of currently available materials. Hence, alternative approaches for RVOT reconstruction, which meet the requirements of biocompatibility and long-term durability of an ideal scaffold, are needed. Through this full scale pre-clinical study, we demonstrated the growth capacity of a Wharton's Jelly derived mesenchymal stromal cells (WJ-MSC) tissue engineered vascular graft used in reconstructing the main pulmonary artery in piglets, providing proof of biocompatibility and efficacy.
View Article and Find Full Text PDFCongenital heart disease (CHD) is the most predominant birth defect and can require several invasive surgeries throughout childhood. The absence of materials with growth and remodelling potential is a limitation of currently used prosthetics in cardiovascular surgery, as well as their susceptibility to calcification. The field of tissue engineering has emerged as a regenerative medicine approach aiming to develop durable scaffolds possessing the ability to grow and remodel upon implantation into the defective hearts of babies and children with CHD.
View Article and Find Full Text PDFSurgical treatment of congenital heart defects affecting the right ventricular outflow tract often requires complex reconstruction and multiple reoperations. With a randomized controlled trial, we compared a novel tissue-engineered small intestine submucosa-based graft for pulmonary artery reconstruction (seeded with mesenchymal stem cells derived from Wharton's Jelly) with conventional small intestine submucosa in growing piglets. Six months after implantation, seeded grafts showed integration with host tissues at cellular level and exhibited growth potential on transthoracic echocardiography and cardiovascular magnetic resonance.
View Article and Find Full Text PDFThe materials available for the right ventricular outflow tract (RVOT) reconstruction in patients with tetralogy of fallot (TOF)/pulmonary atresia come with the severe limitation of long-term degeneration and lack of growth potential, causing right ventricular dysfunction, aneurysm formation, and arrhythmias, thus necessitating several high-risk reoperations throughout patients' lives. In this study, we evaluated the capacity of mesenchymal stem cells (MSCs) derived from the Wharton's Jelly (WJ-MSCs), the gelatinous inner portion of the umbilical cord, to grow and recellularize an extracellular matrix (ECM) graft in our optimized xeno-free, good manufacturing practice-compliant culture system. WJ-MSCs were phenotypically and functionally characterized by flow cytometry and multilineage differentiation capacity, respectively.
View Article and Find Full Text PDF