RNA 5-methyluridine (m5U) sites play a significant role in understanding RNA modifications, which influence numerous biological processes such as gene expression and cellular functioning. Consequently, the identification of m5U sites can play a vital role in the integrity, structure, and function of RNA molecules. Therefore, this study introduces GRUpred-m5U, a novel deep learning-based framework based on a gated recurrent unit in mature RNA and full transcript RNA datasets.
View Article and Find Full Text PDFInfectious fungi have been an increasing global concern in the present era. A promising approach to tackle this pressing concern involves utilizing Antifungal peptides (AFP) to develop an antifungal drug that can selectively eliminate fungal pathogens from a host with minimal toxicity to the host. Accordingly, identifying precise therapeutic antifungal peptides is crucial for developing effective drugs and treatments.
View Article and Find Full Text PDFAntimicrobials are molecules that prevent the formation of microorganisms such as bacteria, viruses, fungi, and parasites. The necessity to detect antimicrobial peptides (AMPs) using machine learning and deep learning arises from the need for efficiency to accelerate the discovery of AMPs, and contribute to developing effective antimicrobial therapies, especially in the face of increasing antibiotic resistance. This study introduced AMP-RNNpro based on Recurrent Neural Network (RNN), an innovative model for detecting AMPs, which was designed with eight feature encoding methods that are selected according to four criteria: amino acid compositional, grouped amino acid compositional, autocorrelation, and pseudo-amino acid compositional to represent the protein sequences for efficient identification of AMPs.
View Article and Find Full Text PDFAnticancer Peptides (ACPs) offer significant potential as cancer treatment drugs in this modern era. Quickly identifying active compounds from protein sequences is crucial for healthcare and cancer treatment. In this paper ANNprob-ACPs, a novel and effective model for detecting ACPs has been implemented based on nine feature encoding techniques, including AAC, CC, W2V, DPC, PAAC, QSO, CTDC, CTDT, and CKSAAGP.
View Article and Find Full Text PDF