Mammalian brains feature exceptionally high levels of non-CpG DNA methylation alongside the canonical form of CpG methylation. Non-CpG methylation plays a critical regulatory role in cognitive function, which is mediated by the binding of MeCP2, the transcriptional regulator that when mutated causes Rett syndrome. However, it is unclear whether the non-CpG neural methylation system is restricted to mammalian species with complex cognitive abilities or has deeper evolutionary origins.
View Article and Find Full Text PDFEgg-laying mammals (monotremes) are the only extant mammalian outgroup to therians (marsupial and eutherian animals) and provide key insights into mammalian evolution. Here we generate and analyse reference genomes of the platypus (Ornithorhynchus anatinus) and echidna (Tachyglossus aculeatus), which represent the only two extant monotreme lineages. The nearly complete platypus genome assembly has anchored almost the entire genome onto chromosomes, markedly improving the genome continuity and gene annotation.
View Article and Find Full Text PDFThe evolution of heteromorphic sex chromosomes has occurred independently many times in different lineages. The differentiation of sex chromosomes leads to dramatic changes in sequence composition and function and guides the evolutionary trajectory and utilization of genes in pivotal sex determination and reproduction roles. In addition, meiotic recombination and pairing mechanisms are key in orchestrating the resultant impact, retention and maintenance of heteromorphic sex chromosomes, as the resulting exposure of unpaired DNA at meiosis triggers ancient repair and checkpoint pathways.
View Article and Find Full Text PDFThe platypus is an egg-laying mammal which, alongside the echidna, occupies a unique place in the mammalian phylogenetic tree. Despite widespread interest in its unusual biology, little is known about its population structure or recent evolutionary history. To provide new insights into the dispersal and demographic history of this iconic species, we sequenced the genomes of 57 platypuses from across the whole species range in eastern mainland Australia and Tasmania.
View Article and Find Full Text PDFCohesins are vital for chromosome organisation during meiosis and mitosis. In addition to the important function in sister chromatid cohesion, these complexes play key roles in meiotic recombination, DSB repair, homologous chromosome pairing and segregation. Egg-laying mammals (monotremes) feature an unusually complex sex chromosome system, which raises fundamental questions about organisation and segregation during meiosis.
View Article and Find Full Text PDFSRY (Sex Determining Region Y)-Box 4 or Sox4 is an important regulator of the pan-neuronal gene expression during post-mitotic cell differentiation within the mammalian brain. Sox4 gene locus has been previously characterized with multiple sense and overlapping natural antisense transcripts [1], [2]. Here we provide accompanying data on various analyses performed and described in Ling et al.
View Article and Find Full Text PDFNatural antisense transcripts (NATs) are involved in cellular development and regulatory processes. Multiple NATs at the Sox4 gene locus are spatiotemporally regulated throughout murine cerebral corticogenesis. In the study, we evaluated the potential functional role of Sox4 NATs at Sox4 gene locus.
View Article and Find Full Text PDFBackground: In therian mammals heteromorphic sex chromosomes are subject to meiotic sex chromosome inactivation (MSCI) during meiotic prophase I while the autosomes maintain transcriptional activity. The evolution of this sex chromosome silencing is thought to result in retroposition of genes required in spermatogenesis from the sex chromosomes to autosomes. In birds sex chromosome specific silencing appears to be absent and global transcriptional reductions occur through pachytene and sex chromosome-derived autosomal retrogenes are lacking.
View Article and Find Full Text PDFThe platypus and echidna are the only extant species belonging to the clade of monotremata, the most basal mammalian lineage. The platypus is particularly well known for its mix of mammalian and reptilian characteristics and work in recent years has revealed this also extends to the genetic level. Amongst the monotreme specific features is the unique multiple sex chromosome system (5X4Y in the echidna and 5X5Y in the platypus), which forms a chain in meiosis.
View Article and Find Full Text PDFOnly a very small fraction of long noncoding RNAs (lncRNAs) are well characterized. The evolutionary history of lncRNAs can provide insights into their functionality, but the absence of lncRNA annotations in non-model organisms has precluded comparative analyses. Here we present a large-scale evolutionary study of lncRNA repertoires and expression patterns, in 11 tetrapod species.
View Article and Find Full Text PDFAs a result of sex chromosome differentiation from ancestral autosomes, male mammalian cells only contain one X chromosome. It has long been hypothesized that X-linked gene expression levels have become doubled in males to restore the original transcriptional output, and that the resulting X overexpression in females then drove the evolution of X inactivation (XCI). However, this model has never been directly tested and patterns and mechanisms of dosage compensation across different mammals and birds generally remain little understood.
View Article and Find Full Text PDFBackground: MicroRNAs (miRNAs) are small non-coding RNAs that can exert multilevel inhibition/repression at a post-transcriptional or protein synthesis level during disease or development. Characterisation of miRNAs in adult mammalian brains by deep sequencing has been reported previously. However, to date, no small RNA profiling of the developing brain has been undertaken using this method.
View Article and Find Full Text PDFMonotremes are phylogenetically and phenotypically unique animals with an unusually complex sex chromosome system that is composed of ten chromosomes in platypus and nine in echidna. These chromosomes are alternately linked (X1Y1, X2Y2, ..
View Article and Find Full Text PDFPlatypus and echidnas are the only living representative of the egg-laying mammals that diverged 166 million years ago from the mammalian lineage. Despite occupying a key spot in mammalian phylogeny, research on monotremes has been limited by access to material and lack of molecular genetic resources. This has changed recently, and the sequencing of the platypus genome has promoted monotremes into a generally accessible tool in comparative genomics.
View Article and Find Full Text PDFThe sequential modifications of histones form the basis of the histone code that translates into either gene activation or repression. Nuclear receptors recruit a cohort of histone-modifying enzymes in response to ligand binding and regulate proliferation, differentiation, and cell death. In Drosophila melanogaster, the steroid hormone ecdysone binds its heterodimeric receptor ecdysone receptor/ultraspiracle to spatiotemporally regulate the transcription of several genes.
View Article and Find Full Text PDFThe Apaf-1 protein is essential for cytochrome c-mediated caspase-9 activation in the intrinsic mammalian pathway of apoptosis. Although Apaf-1 is the only known mammalian homologue of the Caenorhabditis elegans CED-4 protein, the deficiency of apaf-1 in cells or in mice results in a limited cell survival phenotype, suggesting that alternative mechanisms of caspase activation and apoptosis exist in mammals. In Drosophila melanogaster, the only Apaf-1/CED-4 homologue, ARK, is required for the activation of the caspase-9/CED-3-like caspase DRONC.
View Article and Find Full Text PDFdronc, the only apical caspase in Drosophila, is thought to be essential and non-redundant for apoptosis. Recent analyses of several independently derived dronc mutants have demonstrated that DRONC is required for normal development. Interestingly, analysis of these mutants show that DRONC is not essential for cell death in all tissues and that in some cases, DRONC-independent effector caspase activation and apoptosis can occur.
View Article and Find Full Text PDFProteases of the caspase family play key roles in the execution of apoptosis. In Drosophila there are seven caspases, but their roles in cell death have not been studied in detail due to a lack of availability of specific mutants. Here, we describe the generation of a specific mutant of the Drosophila gene encoding DRONC, the only caspase recruitment domain (CARD) containing apical caspase in the fly.
View Article and Find Full Text PDFAmong the seven caspases encoded in the fly genome, only dronc contains a caspase recruitment domain. To assess the function of this gene in development, we produced a null mutation in dronc. Animals lacking zygotic dronc are defective for programmed cell death (PCD) and arrest as early pupae.
View Article and Find Full Text PDFThe steroid hormone ecdysone regulates moulting, cell death, and differentiation during insect development. Ecdysone mediates its biological effects by either direct activation of gene transcription after binding to its receptor EcR-Usp or via hierarchical transcriptional regulation of several primary transcription factors. In turn, these transcription factors regulate the expression of several downstream genes responsible for specific biological outcomes.
View Article and Find Full Text PDFDevelopmentally programmed cell death is regulated by a balance between pro- and anti-death signaling. During Drosophila metamorphosis, the removal of larval tissues is dependent on the steroid hormone ecdysone, which controls the levels of pro- and anti-death molecules. Ecdysone binds to its heterodimeric receptor ecdysone receptor/ultraspiracle to mediate transcription of primary response genes.
View Article and Find Full Text PDFBcl-2 family proteins are key regulators of apoptosis. Both pro-apoptotic and anti-apoptotic members of this family are found in mammalian cells, but only the pro-apoptotic protein Debcl has been characterized in Drosophila: Here we report that Buffy, the second Drosophila Bcl-2-like protein, is a pro-survival protein. Ablation of Buffy by RNA interference leads to ectopic apoptosis, whereas overexpression of buffy results in the inhibition of developmental programmed cell death and gamma irradiation-induced apoptosis.
View Article and Find Full Text PDFThe steroid hormone ecdysone regulates both cell differentiation and cell death during insect metamorphosis, by hierarchical transcriptional regulation of a number of genes, including the Broad-Complex (BR-C), the zinc finger family of transcription factors. These genes in turn regulate the transcription of a number of downstream genes. DRONC, a key apical caspase in Drosophila, is the only known caspase that is transcriptionally regulated by ecdysone during development.
View Article and Find Full Text PDF