Publications by authors named "Taskeen Janjua"

Glioblastoma (GBM) is an aggressive malignancy of the central nervous system (CNS) that remains incurable despite the multitude of improvements in cancer therapeutics. The conventional chemo and radiotherapy post-surgery have only been able to improve the prognosis slightly; however, the development of resistance and/or tumor recurrence is almost inevitable. There is a pressing need for adjuvant molecular therapies that can successfully and efficiently block tumor progression.

View Article and Find Full Text PDF

Cannabidiol (CBD) is one of the most commonly utilised phytocannabinoids due to its non-psychoactive and multiple potential therapeutic properties and its non-selective pharmacology. Recent studies have demonstrated efficacy of CBD in some types of drug resistant epilepsies in combination with other therapies; comparative efficacy to other agents or placebo has been hoped for anxiety, chronic pain, and inflammatory disorders based on animal data. Although CBD products are generally treated as a restricted substance, these are being eased, partially in response to significant growth in CBD product usage and increased production but more due to emerging evidence about its safety and pharmacological properties.

View Article and Find Full Text PDF

Introduction: Brain cancer is a debilitating disease with a poor survival rate. There are significant challenges for effective treatment due to the presence of the blood-brain barrier (BBB) and blood-tumor barrier (BTB) which impedes drug delivery to tumor sites. Many nanomedicines have been tested in improving both the survival and quality of life of patients with brain cancer with the recent focus on inorganic nanoparticles such as silica nanoparticles (SNPs).

View Article and Find Full Text PDF

Silica nanoparticles (SNP) have gained tremendous attention in the recent decades. They have been used in many different biomedical fields including diagnosis, biosensing and drug delivery. Medical uses of SNP for anti-cancer, anti-microbial and theranostic applications are especially prominent due to their exceptional performance to deliver many different small molecules and recently biologics (mRNA, siRNA, antigens, antibodies, proteins, and peptides) at targeted sites.

View Article and Find Full Text PDF

The presence of the blood-brain barrier (BBB) limits the delivery of therapies into the brain. There has been significant interest in overcoming the BBB for the effective delivery of therapies to the brain. Inorganic nanomaterials, especially silica nanoparticles with varying surface chemistry and surface topology, have been recently used as permeation enhancers for oral protein delivery.

View Article and Find Full Text PDF

Nanoparticle based permeation enhancers have the potential to improve the oral delivery of biologics. Recently, solid silica nanoparticles were discovered to improve the intestinal permeability of peptides and proteins transient opening of the gut epithelium. In this study, we have developed small-sized (∼60 nm) virus-like silica nanoparticles (VSNP) as a reversible and next generation non-toxic permeation enhancer for oral delivery of biologics.

View Article and Find Full Text PDF

Coenzyme Q10 is a potent antioxidant that plays an important role in the maintenance of various biochemical pathways of the body and has a wide range of therapeutic applications. However, it has low aqueous solubility and oral bioavailability. Mesoporous silica nanoparticles (MCM-41 and SBA-15 types) exhibiting varying pore sizes and modified with phosphonate and amino groups were used to study the influence of pore structure and surface chemistry on the solubility, release profile, and intracellular ROS inhibition activity of coenzyme Q10.

View Article and Find Full Text PDF

The prognosis of brain cancers such as glioblastoma remains poor despite numerous advancements in the field of neuro-oncology. The presence of the blood brain barrier (BBB) along with the highly invasive and aggressive nature of glioblastoma presents a difficult challenge for developing effective therapies. Temozolomide (TMZ) is a first line agent used in the clinic for glioblastoma and it has been useful in increasing patient survival rates.

View Article and Find Full Text PDF

Natural killer (NK) cells have emerged as a major target for cancer immunotherapies, particularly as cellular therapy modalities because they have relatively less toxicity than T lymphocytes. However, NK cell-based therapy suffers from many challenges, including problems with its activation, resistance to genetic engineering, and large-scale expansion needed for therapeutic purposes. Recently, nanobiomaterials have emerged as a promising solution to control the challenges associated with NK cells.

View Article and Find Full Text PDF

This study aimed to develop synergistic therapies to treat superbug infections through the encapsulation of sortase A inhibitors (SrtAIs; -chalcone (TC), curcumin (CUR), quercetin (QC), or berberine chloride (BR)) into MCM-41 mesoporous silica nanoparticles (MSNs) or a phosphonate-modified analogue (MCM-41-PO) to overcome their poor aqueous solubility. A resazurin-modified minimum inhibitory concentration (MIC) and checkerboard assays, to measure SrtAI synergy in combination with leading antimicrobial peptides (AMPs; pexiganan (PEX), indolicidin (INDO), and [I5, R8] mastoparan (MASTO)), were determined against methicillin-sensitive (MSSA) and methicillin-resistant (MRSA) , , and . The results demonstrated that the MCM-41 and MCM-41-PO formulations significantly improved the aqueous solubility of each SrtAI.

View Article and Find Full Text PDF

Silica nanoparticles have entered clinical trials for a variety of biomedical applications, including oral drug delivery, diagnostics, plasmonic resonance and photothermal ablation therapy. Preliminary results indicate the safety, efficacy and viability of silica nanoparticles under these clinical scenarios.

View Article and Find Full Text PDF

The blood brain barrier (BBB) and blood tumour barrier (BTB) remain a major roadblock for delivering therapies to treat brain cancer. Amongst brain cancers, glioblastoma (GBM) is notoriously difficult to treat due to the challenge of delivering chemotherapeutic drugs across the BBB and into the tumour microenvironment. Consequently, GBM has high rates of tumour recurrence.

View Article and Find Full Text PDF

Coenzyme-Q10 (CoQ10) is a hydrophobic benzoquinone with antioxidant and anti-inflammatory properties. It is known to reduce oxidative stress in various health conditions. However, due to the low solubility, permeability, stability, and poor oral bioavailability, the oral dose of CoQ10 required for the desired therapeutic effect is very high.

View Article and Find Full Text PDF

Glioblastoma (GBM) is one of the most aggressive cancers of the brain. Despite extensive research over the last several decades, the survival rates for GBM have not improved and prognosis remains poor. To date, only a few therapies are approved for the treatment of GBM with the main reasons being: 1) significant tumour heterogeneity which promotes the selection of resistant subpopulations 2) GBM induced immunosuppression and 3) fortified location of the tumour in the brain which hinders the delivery of therapeutics.

View Article and Find Full Text PDF

Resveratrol (RES) is a naturally existing polyphenol which exhibits anti-oxidant, anti-inflammatory, and anti-cancer properties. In recent years, RES has attracted attention for its synergistic effect with other anti-cancer drugs for the treatment of drug resistant cancers. However, RES faces the issues of poor pharmacokinetics, stability and low solubility which limits its clinical application.

View Article and Find Full Text PDF