Publications by authors named "Tasinkevych M"

Motivated by recent experimental results that reveal rich collective dynamics of thousands-to-millions of active liquid crystal skyrmions, we have developed a coarse-grained, particle-based model of the dynamics of skyrmions in a dilute regime. The basic physical mechanism of skyrmion motion is related to squirming undulations of domains with high director twist within the skyrmion cores when the electric field is turned on and off. The motion is not related to mass flow and is caused only by the reorientation dynamics of the director field.

View Article and Find Full Text PDF

Self-propelled nanoparticles moving through liquids offer the possibility of creating advanced applications where such nanoswimmers can operate as artificial molecular-sized motors. Achieving control over the motion of nanoswimmers is a crucial aspect for their reliable functioning. While the directionality of micron-sized swimmers can be controlled with great precision, steering nano-sized active particles poses a real challenge.

View Article and Find Full Text PDF

Self-assembly of colloidal particles into predefined structures is a promising way to design inexpensive manmade materials with advanced macroscopic properties. Doping of nematic liquid crystals (LCs) with nanoparticles has a series of advantages in addressing these grand scientific and engineering challenges. It also provides a very rich soft matter platform for the discovery of unique condensed matter phases.

View Article and Find Full Text PDF

Active colloids belong to a class of nonequilibrium systems where energy uptake, conversion, and dissipation occur at the level of individual colloidal particles, which can lead to particles' self-propelled motion and surprising collective behavior. Examples include coexistence of vapor- and liquid-like steady states for active particles with repulsive interactions only, phenomena known as motility-induced phase transitions. Similarly to motile unicellular organisms, active colloids tend to accumulate at confining surfaces forming dense adsorbed films.

View Article and Find Full Text PDF

Catalytically active macromolecules are envisioned as key building blocks in the development of artificial nanomotors. However, theory and experiments report conflicting findings regarding their dynamics. The lack of consensus is mostly caused by the limited understanding of the specifics of self-propulsion mechanisms at the nanoscale.

View Article and Find Full Text PDF

The physics of self-propelled objects at the nanoscale is a rapidly developing research field where recent experiments have focused on the motion of individual catalytic enzymes. Contrary to the experimental advancements, theoretical understanding of the possible self-propulsion mechanisms at these scales is limited. A particularly puzzling question concerns the origins of the reportedly high diffusivities of the individual enzymes.

View Article and Find Full Text PDF

We investigate, numerically, the effects of externally imposed material flows on the structure and temporal evolution of liquid crystal (LC) skyrmions. The dynamics of a 2D system of skyrmions is modeled using the Ericksen-Leslie theory, which is based on two coupled equations, one for material flow and the other for the director field. As the time scales of the velocity and director fields differ by several orders of magnitude for realistic values of the system parameters, we have simplified the calculations by assuming that the velocity relaxes instantaneously when compared to the relaxation of the director field.

View Article and Find Full Text PDF

Synchronized behavior in a system of coupled dynamic objects is a fascinating example of an emerged cooperative phenomena which has been observed in systems as diverse as a group of insects, neural networks, or networks of computers. In many instances, however, the synchronization is undesired because it may lead to system malfunctioning, as in the case of Alzheimer's and Parkinson's diseases, for example. Recent studies of static networks of oscillators have shown that the presence of a small fraction of so-called contrarian oscillators can suppress the undesired network synchronization.

View Article and Find Full Text PDF

A lattice model is used to study repulsive active particles at a planar surface. A rejection-free Kinetic Monte Carlo method is employed to characterize the wetting behaviour. The model predicts a motility-induced phase separation of active particles, and the bulk coexistence of dense liquid-like and dilute vapour-like steady states is determined.

View Article and Find Full Text PDF

Doping of nematic liquid crystals with colloidal nanoparticles presents a rich soft matter platform for controlling material properties and discovering diverse condensed matter phases. We describe nematic nanocolloids that simultaneously exhibit strong electrostatic monopole and dipole moments and yield competing long-range anisotropic interactions. Combined with interactions due to orientational elasticity and order parameter gradients of the nematic host medium, they lead to diverse forms of self-assembly both in the bulk of an aligned liquid crystal and when one-dimensionally confined by singular topological defect lines.

View Article and Find Full Text PDF

Colloidal interactions in nematic liquid crystals can be described as interactions between elastic multipoles that depend on particle shape, topology, chirality, boundary conditions and induced topological defects. Here, we describe a nematic colloidal system consisting of mesostructures of gold capable of inducing elastic multipoles of different order. Elastic monopoles are formed by relatively large asymmetric mesoflower particles, for which gravity and elastic torque balancing yields monopole-type interactions.

View Article and Find Full Text PDF

Here, we investigate the complete drying of hydrophobic cavities in order to elucidate the dependence of drying on the size, the geometry, and the degree of hydrophobicity of the confinement. Two complementary theoretical approaches are adopted: a macroscopic one based on classical capillarity and a microscopic classical density functional theory. This combination allows us to pinpoint unique drying mechanisms at the nanoscale and to clearly differentiate them from the mechanisms operational at the macroscale.

View Article and Find Full Text PDF

If catalytically active Janus particles are dispersed in certain liquid solutions, they can create a gradient in the chemical composition of this solution along their surfaces, as well as along any nearby confining surfaces. This gradient drives self-propulsion via a self-phoretic mechanism, while the compositional gradient along a wall gives rise to chemiosmosis, which additionally contributes to self-motility. In this study, we analyze theoretically the dynamics of an active colloid near chemically patterned walls.

View Article and Find Full Text PDF
Article Synopsis
  • Research focuses on creating colloidal machines powered by chemical reactions, specifically utilizing microparticles that move in solutions.
  • Platinum microparticles demonstrate spontaneous movement in hydrogen peroxide, with movement patterns influenced by their shape through nanofabrication techniques.
  • A mathematical model is established to clarify how particle shape affects electrocatalytic reactions and the resulting electrokinetic flows, highlighting a unique self-electrophoretic propulsion mechanism.
View Article and Find Full Text PDF

Superparamagnetic nanoparticles incorporated into elastic media offer the possibility of creating actuators driven by external fields in a multitude of environments. Here, magnetoelastic membranes are studied through a combination of continuum mechanics and molecular dynamics simulations. We show how induced magnetic interactions affect the buckling and the configuration of magnetoelastic membranes in rapidly precessing magnetic fields.

View Article and Find Full Text PDF

Various aspects of self-motility of chemically active colloids in Newtonian fluids can be captured by simple models for their chemical activity plus a phoretic-slip hydrodynamic boundary condition on their surface. For particles of simple shapes (e.g.

View Article and Find Full Text PDF

The propulsion of micro- and nanoparticles using ultrasound is an attractive strategy for the remote manipulation of colloidal matter using biocompatible energy inputs. However, the physical mechanisms underlying acoustic propulsion are poorly understood, and our ability to transduce acoustic energy into different types of particle motions remains limited. Here, we show that the three-dimensional shape of a colloidal particle can be rationally engineered to direct desired particle motions powered by ultrasound.

View Article and Find Full Text PDF

Colloidal particles disturb the alignment of rod-like molecules of liquid crystals, giving rise to long-range interactions that minimize the free energy of distorted regions. Particle shape and topology are known to guide this self-assembly process. However, how chirality of colloidal inclusions affects these long-range interactions is unclear.

View Article and Find Full Text PDF

Colloids can achieve motility by promoting at their surfaces chemical reactions in the surrounding solution. A well-studied case is that of self-phoresis, in which motility arises due to the spatial inhomogeneities in the chemical composition of the solution and the distinct interactions of the solvent molecules and of the reaction products with the colloid. For simple models of such chemically active colloids, the steady-state motion in an unbounded solution can be derived analytically in closed form.

View Article and Find Full Text PDF

The Landau-de Gennes free energy is used to study theoretically the effective interaction of spherical "key" and anisotropic "lock" colloidal particles. We assume identical anchoring properties of the surfaces of the key and of the lock particles, and we consider planar degenerate and perpendicular anchoring conditions separately. The lock particle is modeled as a spherical particle with a spherical dimple.

View Article and Find Full Text PDF

Cholesteric liquid crystals can potentially provide a means for tunable self-organization of colloidal particles. However, the structures of particle-induced defects and the ensuing elasticity-mediated colloidal interactions in these media remain much less explored and understood as compared to their nematic liquid crystal counterparts. Here we demonstrate how colloidal microspheres of varying diameter relative to the helicoidal pitch can induce dipolelike director field configurations in cholesteric liquid crystals, where these particles are accompanied by point defects and a diverse variety of nonsingular line defects forming closed loops.

View Article and Find Full Text PDF

We investigate theoretically the morphology of a thin nematic film adsorbed at flat substrate patterned by stripes with alternating aligning properties, normal and tangential respectively. We construct a simple 'exactly-solvable' effective interfacial model where the liquid crystal distortions are accounted for via an effective interface potential. We find that chemically patterned substrates can strongly deform the nematic-air interface.

View Article and Find Full Text PDF

A liquid droplet placed on a geometrically textured surface may take on a "suspended" state, in which the liquid wets only the top of the surface structure, while the remaining geometrical features are occupied by vapor. This superhydrophobic Cassie-Baxter state is characterized by its composite interface which is intrinsically fragile and, if subjected to certain external perturbations, may collapse into the fully wet, so-called Wenzel state. Restoring the superhydrophobic Cassie-Baxter state requires a supply of free energy to the system in order to again nucleate the vapor.

View Article and Find Full Text PDF

We experimentally and theoretically study the variety of elastic deformations that appear when colloidal inclusions are embedded in thin wetting films of a nematic liquid crystal with hybrid anchoring conditions. In the thickest films, the elastic dipoles formed by particles and their accompanying defects share features with the patterns commonly observed in liquid crystal cells. When the film gets thinner than the particles size, however, the capillary effects strongly modify the appearance of the elastic dipoles and the birefringence patterns.

View Article and Find Full Text PDF

Catalytically active Janus particles suspended in solution create gradients in the chemical composition of the solution along their surfaces, as well as along any nearby container walls. The former leads to self-phoresis, while the latter gives rise to chemiosmosis, providing an additional contribution to self-motility. Chemiosmosis strongly depends on the molecular interactions between the diffusing chemical species and the wall.

View Article and Find Full Text PDF