A direct comparison of DNA charge transport (CT) with different photooxidants has been made. Photooxidants tested include the two metallointercalators, Rh(phi)(2)(bpy')(3+) and Ru(phen)(bpy')(dppz)(2+), and three organic intercalators, ethidium (Et), thionine (Th), and anthraquinone (AQ). CT has been examined through a DNA duplex containing an A(6)-tract intervening between two 5'-CGGC-3' sites with each of the photooxidants covalently tethered to one end of the DNA duplex.
View Article and Find Full Text PDFLong-range oxidative damage to DNA was utilized as a probe to delineate the effects of different ion distributions on DNA charge transport. DNA assemblies were constructed, containing a tethered rhodium intercalating photooxidant, spatially separated from two 5'-GG-3' sites of oxidative damage, with either an A6-tract or a mixed DNA sequence intervening between the guanine doublets; the extent of charge transport was assessed through measurements of the ratio of yields of damage at the guanine doublet distal versus that proximal to the metal binding site. The distal/proximal damage ratios were compared after photooxidation of otherwise identical Rh-tethered assemblies, except for 32P-labeling either at the 5'- or 3'-end; this labeling difference corresponds, in the absence of charge neutralization by condensed counterions, to a shift in negative charge from one end of the duplex to the other.
View Article and Find Full Text PDF