Desorption/ionization on porous silicon mass spectrometry (DIOS-MS) is shown to be a powerful technique for the sensing of low-molecular-weight compounds, including drugs and their metabolites. Surface modification of DIOS surfaces is required to increase analytical performance and ensure stability. However, common wet chemical modification techniques use fluorosilanes, which are less suitable for high-throughput manufacturing and analytical repeatability.
View Article and Find Full Text PDFNovel doping agents and doping strategies are continually entering the market, placing a burden on analytical methods to detect, adapt, and respond to subtle changes in the composition of biological samples. Therefore, there is a growing interest in rapid, adaptable, and ideally confirmatory analytical methods for the fight against doping. Nanostructured silicon (nano-Si)-based surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS) can effectively address this need, allowing fast and sensitive detection of prohibited compounds used in sport doping.
View Article and Find Full Text PDFACS Appl Mater Interfaces
February 2017
Surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS) is a high-throughput analytical technique ideally suited for small-molecule detection from different bodily fluids (e.g., saliva, urine, and blood plasma).
View Article and Find Full Text PDFPorous silicon based surface-assisted laser desorption ionization mass spectrometry (pSi SALDI-MS) is an analytical technique well suited for high throughput analysis of low molecular weight compounds from biological samples. A potential application of this technology is the compliance monitoring of opioid addiction programmes, where methadone is used as a pharmacological treatment for drugs such as heroin. Here, we present the detection and quantification of methadone and 2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine (EDDP) from water and clinical samples (saliva, urine, and plasma) from opioid dependent participants using pSi SALDI-MS.
View Article and Find Full Text PDFPorous silicon microparticles (pSi MPs) functionalized with fluorescent dyes (lissamine and carboxy-5-fluorescein) and intrinsically luminescent pSi MPs were explored as novel fingerprint dusting powders. The versatility of luminescent pSi MPs is demonstrated through time-gated imaging of their long-lived (lifetime>28 μs) near-IR emission, and mass spectrometry analysis of fingerprints dusted with luminescent pSi MPs to provide further information on exogenous small molecules present in latent fingerprints.
View Article and Find Full Text PDFNanostructure imaging mass spectrometry (NIMS) using porous silicon (pSi) is a key technique for molecular imaging of exogenous and endogenous low molecular weight compounds from fingerprints. However, high-mass-accuracy NIMS can be difficult to achieve as time-of-flight (ToF) mass analyzers, which dominate the field, cannot sufficiently compensate for shifts in measured m/z values. Here, we show internal recalibration using a thin layer of silver (Ag) sputter-coated onto functionalized pSi substrates.
View Article and Find Full Text PDFSurface-assisted laser desorption/ionization mass spectrometry (SALDI-MS) is ideally suited for the high-throughput analysis of small molecules in bodily fluids (e.g. saliva, urine, and blood plasma).
View Article and Find Full Text PDF