Publications by authors named "Taryn B Kiley"

The assembly of the bacterial flagellum is exquisitely controlled. Flagellar biosynthesis is underpinned by a specialized type III secretion system that allows export of proteins from the cytoplasm to the nascent structure. Bacillus subtilis regulates flagellar assembly using both conserved and species-specific mechanisms.

View Article and Find Full Text PDF

The Gram-positive soil bacterium Bacillus subtilis is able to choose between motile and sessile lifestyles. The sessile way of life, also referred to as biofilm, depends on the formation of an extracellular polysaccharide matrix and some extracellular proteins. Moreover, a significant proportion of cells in a biofilm form spores.

View Article and Find Full Text PDF

Cell differentiation is ubiquitous and facilitates division of labor and development. Bacteria are capable of multicellular behaviors that benefit the bacterial community as a whole. A striking example of bacterial differentiation occurs throughout the formation of a biofilm.

View Article and Find Full Text PDF

During biofilm formation by Bacillus subtilis, two extracellular matrix components are synthesized, namely, the TasA amyloid fibers and an exopolysaccharide. In addition, a small protein called YuaB has been shown to allow the biofilm to form. The regulatory protein DegU is known to initiate biofilm formation.

View Article and Find Full Text PDF

A biofilm is a complex community of cells enveloped in a self-produced polymeric matrix. Entry into a biofilm is exquisitely controlled at the level of transcription and in the Gram-positive organism Bacillus subtilis it requires the concerted efforts of three major transcription factors. Here, we demonstrate that in addition to transcriptional control, B.

View Article and Find Full Text PDF

Bacteria control multicellular behavioural responses, including biofilm formation and swarming motility, by integrating environmental cues through a complex regulatory network. Heterogeneous gene expression within an otherwise isogenic cell population that allows for differentiation of cell fate is an intriguing phenomenon that adds to the complexity of multicellular behaviour. This review focuses on recent data about how DegU, a pleiotropic response regulator, co-ordinates multicellular behaviour in Bacillus subtilis.

View Article and Find Full Text PDF

Unicellular organisms use a variety of mechanisms to co-ordinate activity within a community and accomplish complex multicellular processes. Because some of the processes that are exhibited by one species can be physiologically incompatible, it raises the question of how entry into these different pathways is regulated. In the Gram-positive bacterium Bacillus subtilis, genetic competence, swarming motility, biofilm formation, complex colony architecture and protease production are all regulated by the response regulator DegU.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessione7qj0tchcm6rvqa8vptn11q14it30mjc): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once