Background: Left ventricular diastolic dysfunction (LVDD) is an important precursor of heart failure (HF), but little is known about its relationship with gut dysbiosis and microbial-related metabolites. By leveraging the multi-omics data from the Hispanic Community Health Study/Study of Latinos (HCHS/SOL), a study with population at high burden of LVDD, we aimed to characterize gut microbiota associated with LVDD and identify metabolite signatures of gut dysbiosis and incident LVDD.
Results: We included up to 1996 Hispanic/Latino adults (mean age: 59.
Aims: Heart failure (HF) has shared genetic architecture with its risk factors: atrial fibrillation (AF), body mass index (BMI), coronary heart disease (CHD), systolic blood pressure (SBP), and type 2 diabetes (T2D). We aim to assess the association and risk prediction performance of risk-factor polygenic risk scores (PRSs) for incident HF and its subtypes in bi-racial populations.
Methods And Results: Five PRSs were constructed for AF, BMI, CHD, SBP, and T2D in White participants of the Atherosclerosis Risk in Communities (ARIC) study.
Aims: Myocardial infarction (MI) is a major cause of death and disability worldwide. Most metabolomics studies investigating metabolites predicting MI are limited by the participant number and/or the demographic diversity. We sought to identify biomarkers of incident MI in the COnsortium of METabolomics Studies.
View Article and Find Full Text PDFHypertension is the main modifiable risk factor for cardiovascular morbidity and mortality but discovering molecular mechanisms for targeted treatment has been challenging. Here we investigate associations of blood metabolite markers with hypertension by integrating data from nine intercontinental cohorts from the COnsortium of METabolomics Studies. We included 44,306 individuals with circulating metabolites (up to 813).
View Article and Find Full Text PDFImportance: Cardiometabolic disease is responsible for decreased longevity and poorer cardiovascular outcomes in the modern era. Metabolite profiling provides a specific measure of global metabolic function to examine specific metabolic mechanisms and pathways of cardiometabolic disease beyond its clinical definitions.
Objectives: To define a molecular basis for cardiometabolic stress and assess its association with cardiovascular prognosis.