Publications by authors named "Tarun R Vemulkar"

We report low-hysteresis, ambipolar bottom gold contact, colloidal PbSe nanowire (NW) field-effect transistors (FETs) by chemically modifying the silicon dioxide (SiO(2)) gate dielectric surface to overcome carrier trapping at the NW-gate dielectric interface. While water bound to silanol groups at the SiO(2) surface are believed to give rise to hysteresis in FETs of a wide range of nanoscale materials, we show that dehydration and silanization are insufficient in reducing PbSe NW FET hysteresis. Encapsulating PbSe NW FETs in cured poly(methyl) methacrylate (PMMA), dehydrates and uniquely passivates the SiO(2) surface, to form low-hysteresis FETs.

View Article and Find Full Text PDF

Wet-chemical methods, under rigorous air-free conditions, were used to synthesize single-crystalline 10 nm diameter PbSe nanowires (NWs), and electric-field, directed assembly was employed to align NW arrays to form the semiconducting channels of field-effect transistors (FETs). Electrical measurements revealed as-aligned NWs in bottom, gold, contact FETs are predominantly p-type ambipolar, consistent with the presentation of small barriers to electron and hole injection for this low band gap semiconductor. Exposing the NW FET to UV-ozone p-doped the NWs, illustrating the sensitivity of PbSe to oxygen, but controlled oxidation allowed the fabrication of unipolar p-type FETs.

View Article and Find Full Text PDF