IEEE Trans Image Process
February 2022
Unsupervised image-to-image translation aims to learn the mapping from an input image in a source domain to an output image in a target domain without paired training dataset. Recently, remarkable progress has been made in translation due to the development of generative adversarial networks (GANs). However, existing methods suffer from the training instability as gradients passing from discriminator to generator become less informative when the source and target domains exhibit sufficiently large discrepancies in appearance or shape.
View Article and Find Full Text PDF