Dynamic reconfiguration of circuit function subserves the flexibility of innate behaviors tuned to physiological states. Internal energy stores adaptively regulate feeding-associated behaviors and integrate opposing hunger and satiety signals at the level of neural circuits. Across vertebrate lineages, the neuropeptides cocaine- and amphetamine-regulated transcript (CART) and neuropeptide Y (NPY) have potent anorexic and orexic functions, respectively, and show energy-state-dependent expression in interoceptive neurons.
View Article and Find Full Text PDFModulation of sensory perception by homeostatic feedback from physiological states is central to innate purposive behaviors. Olfaction is an important predictive modality for feeding-related behaviors and its modulation has been associated with hunger-satiety states. However, the mechanisms mapping internal states to chemosensory processing in order to modify behavior are poorly understood.
View Article and Find Full Text PDFThe cocaine- and amphetamine-regulated transcript (CART) neuropeptide has been implicated in the neural regulation of energy homeostasis across vertebrate phyla. By using gene-specific in situ hybridization, we have mapped the distribution of the four CART mRNAs in the central nervous system of the adult zebrafish. The widespread neuronal expression pattern for CART 2 and 4 suggests a prominent role for the peptide in processing sensory information from diverse modalities including olfactory and visual inputs.
View Article and Find Full Text PDF