The computationally expensive nature of molecular dynamics simulations severely limits its ability to simulate large system sizes and long time scales, both of which are necessary to imitate experimental conditions. In this work, we explore an approach to make use of the data obtained using the quantum mechanical density functional theory (DFT) on small systems and use deep learning to subsequently simulate large systems by taking liquid argon as a test case. A suitable vector representation was chosen to represent the surrounding environment of each Ar atom, and a Δ-NetFF machine learning model, where the neural network was trained to predict the difference in resultant forces obtained by DFT and classical force fields, was introduced.
View Article and Find Full Text PDF