Publications by authors named "Tarrick Qahash"

Background: Artemisinin partial resistance (ART-R) has spread throughout Southeast Asia and mutations in , the molecular marker of resistance, are widely reported in East Africa. Effective assays and robust phenotypes are crucial for monitoring populations for the emergence and spread of resistance. The recently developed extended Recovery Ring-stage Survival Assay used a qPCR-based readout to reduce the labor intensiveness for phenotyping of ART-R and improved correlation with the clinical phenotype of ART-R.

View Article and Find Full Text PDF

Our study leverages gene editing techniques in asexual blood stage parasites to profile novel mutations in mutant PfCRT, an important mediator of piperaquine resistance, which developed in Southeast Asian field isolates or in parasites cultured for long periods of time. We provide evidence that increased parasite fitness of these lines is the primary driver for the emergence of these PfCRT variants. These mutations differentially impact parasite susceptibility to piperaquine and chloroquine, highlighting the multifaceted effects of single point mutations in this transporter.

View Article and Find Full Text PDF

Development of antimalarial compounds into clinical candidates remains costly and arduous without detailed knowledge of the target. As resistance increases and treatment options at various stages of disease are limited, it is critical to identify multistage drug targets that are readily interrogated in biochemical assays. Whole-genome sequencing of 18 parasite clones evolved using thienopyrimidine compounds with submicromolar, rapid-killing, pan-life cycle antiparasitic activity showed that all had acquired mutations in the cytoplasmic isoleucyl tRNA synthetase (cIRS).

View Article and Find Full Text PDF

The emergence of Plasmodium falciparum parasite resistance to dihydroartemisinin + piperaquine (PPQ) in Southeast Asia threatens plans to increase the global use of this first-line antimalarial combination. High-level PPQ resistance appears to be mediated primarily by novel mutations in the P. falciparum chloroquine resistance transporter (PfCRT), which enhance parasite survival at high PPQ concentrations in vitro and increase the risk of dihydroartemisinin + PPQ treatment failure in patients.

View Article and Find Full Text PDF
Article Synopsis
  • * Chemoproteomics studies identified multiple kinase targets, confirming sapanisertib's effective inhibition of PI4Kβ and PKG, which play key roles in the parasite's survival.
  • * The drug's ability to disrupt parasite metabolism and its effectiveness in vivo suggest it can be repositioned as a promising treatment for malaria, especially given the rise of drug resistance.
View Article and Find Full Text PDF