Fibrosis, or the accumulation of extracellular matrix, is a common feature of many chronic diseases. To interrogate core molecular pathways underlying fibrosis, we cross-examine human primary cells from various tissues treated with TGF-β, as well as kidney and liver fibrosis models. Transcriptome analyses reveal that genes involved in fatty acid oxidation are significantly perturbed.
View Article and Find Full Text PDFThiazolidinediones (TZDs) are peroxisome proliferator-activated receptor (PPAR) agonists that represent an effective class of insulin-sensitizing agents; however, clinical use is associated with weight gain and peripheral edema. To elucidate the role of PPAR expression in endothelial cells (ECs) in these side effects, EC-targeted PPAR knockout ( ) mice were placed on a high-fat diet to promote PPAR agonist-induced plasma volume expansion, and then treated with the TZD rosiglitazone. Compared with -floxed wild-type control ( ) mice, treated with rosiglitazone are resistant to an increase in extracellular fluid, water content in epididymal and inguinal white adipose tissue, and plasma volume expansion.
View Article and Find Full Text PDFWe report new SSTR5 antagonists with enhanced potency, subtype selectivity, and minimal off-target activities as compared to previously reported compounds. Starting from the reported SSTR5 antagonist , we systematically surveyed changes in the central core and head piece while maintaining the diphenyl tail group constant. From this study the azaspirodecanone emerged as a new highly potent and selective SSTR5 antagonist.
View Article and Find Full Text PDFFructose consumption in humans and animals has been linked to enhanced de novo lipogenesis, dyslipidemia, and insulin resistance. Hereditary deficiency of ketohexokinase (KHK), the first enzymatic step in fructose metabolism, leads to essential fructosuria in humans, characterized by elevated levels of blood and urinary fructose following fructose ingestion but is otherwise clinically benign. To address whether KHK deficiency is associated with altered glucose and lipid metabolism, a Khk knockout (KO) mouse line was generated and characterized.
View Article and Find Full Text PDFPurpose To evaluate the biodistribution, metabolism, and pharmacokinetics of a new type I collagen-targeted magnetic resonance (MR) probe, CM-101, and to assess its ability to help quantify liver fibrosis in animal models. Materials and Methods Biodistribution, pharmacokinetics, and stability of CM-101 in rats were measured with mass spectrometry. Bile duct-ligated (BDL) and sham-treated rats were imaged 19 days after the procedure by using a 1.
View Article and Find Full Text PDFGPR120 (FFAR4) is a fatty acid sensing G protein coupled receptor (GPCR) that has been identified as a target for possible treatment of type 2 diabetes. A selective activator of GPR120 containing a chromane scaffold has been designed, synthesized, and evaluated . Results of these efforts suggest that chromane propionic acid is a suitable tool molecule for further animal studies.
View Article and Find Full Text PDFType 2 diabetes mellitus (T2DM) is an ever increasing worldwide epidemic, and the identification of safe and effective insulin sensitizers, absent of weight gain, has been a long-standing goal of diabetes research. G-protein coupled receptor 120 (GPR120) has recently emerged as a potential therapeutic target for treating T2DM. Natural occurring, and more recently, synthetic agonists have been associated with insulin sensitizing, anti-inflammatory, and fat metabolism effects.
View Article and Find Full Text PDFThe transformation of an aryloxybutanoic acid ultra high-throughput screening (uHTS) hit into a potent and selective series of G-protein coupled receptor 120 (GPR120) agonists is reported. uHTS hit 1 demonstrated an excellent rodent pharmacokinetic profile and selectivity over the related fatty acid receptor GPR40, but only modest GPR120 potency. Optimization of the "left-hand" aryl group led to compound 6, which demonstrated a GPR120 mechanism-based pharmacodynamic effect in a mouse oral glucose tolerance test (oGTT).
View Article and Find Full Text PDFIt is well known that the ω-3 fatty acids (ω-3-FAs; also known as n-3 fatty acids) can exert potent anti-inflammatory effects. Commonly consumed as fish products, dietary supplements and pharmaceuticals, ω-3-FAs have a number of health benefits ascribed to them, including reduced plasma triglyceride levels, amelioration of atherosclerosis and increased insulin sensitivity. We reported that Gpr120 is the functional receptor for these fatty acids and that ω-3-FAs produce robust anti-inflammatory, insulin-sensitizing effects, both in vivo and in vitro, in a Gpr120-dependent manner.
View Article and Find Full Text PDFThe molecular mechanisms regulating secretion of the orexigenic-glucoregulatory hormone ghrelin remain unclear. Based on qPCR analysis of FACS-purified gastric ghrelin cells, highly expressed and enriched 7TM receptors were comprehensively identified and functionally characterized using in vitro, ex vivo and in vivo methods. Five Gαs-coupled receptors efficiently stimulated ghrelin secretion: as expected the β1-adrenergic, the GIP and the secretin receptors but surprisingly also the composite receptor for the sensory neuropeptide CGRP and the melanocortin 4 receptor.
View Article and Find Full Text PDFHepatic glucose overproduction is a major characteristic of type 2 diabetes. Because glucagon is a key regulator for glucose homeostasis, antagonizing the glucagon receptor (GCGR) is a possible therapeutic strategy for the treatment of diabetes mellitus. To study the effect of hepatic GCGR inhibition on the regulation of lipid metabolism, we generated siRNA-mediated GCGR knockdown (si-GCGR) in the db/db mouse.
View Article and Find Full Text PDFA series of benzimidazolone carboxylic acids and oxazolidinediones were designed and synthesized in search of selective PPARγ modulators (SPPARγMs) as potential therapeutic agents for the treatment of type II diabetes mellitus (T2DM) with improved safety profiles relative to rosiglitazone and pioglitazone, the currently marketed PPARγ full agonist drugs. Structure-activity relationships of these potent and highly selective SPPARγMs were studied with a focus on their unique profiles as partial agonists or modulators. A variety of methods, such as X-ray crystallographic analysis, PPARγ transactivation coactivator profiling, gene expression profiling, and mutagenesis studies, were employed to reveal the differential interactions of these new analogues with PPARγ receptor in comparison to full agonists.
View Article and Find Full Text PDFIn an attempt to understand the applicability of various animal models to dyslipidemia in humans and to identify improved preclinical models for target discovery and validation for dyslipidemia, we measured comprehensive plasma lipid profiles in 24 models. These included five mouse strains, six other nonprimate species, and four nonhuman primate (NHP) species, and both healthy animals and animals with metabolic disorders. Dyslipidemic humans were assessed by the same measures.
View Article and Find Full Text PDFA new series of thiazole-substituted 1,1,1,3,3,3-hexafluoro-2-propanols were prepared and evaluated as malonyl-CoA decarboxylase (MCD) inhibitors. Key analogs caused dose-dependent decreases in food intake and body weight in obese mice. Acute treatment with these compounds also led to a drop in elevated blood glucose in a murine model of type II diabetes.
View Article and Find Full Text PDFBioorg Med Chem Lett
February 2010
Systematic structure-activity relationship (SAR) studies of a screening lead led to the discovery of a series of thiazolidinediones (TZDs) as potent GPR40 agonists. Among them, compound C demonstrated an acute mechanism-based glucose-lowering in an intraperitoneal glucose tolerance test (IPGTT) in lean mice, while no effects were observed in GPR40 knock-out mice.
View Article and Find Full Text PDFNitroalkene fatty acids are potent endogenous ligand activators of PPARgamma-dependent transcription. Previous studies with the naturally occurring regioisomers of nitrolinoleic acid revealed that the isomers are not equivalent with respect to PPARgamma activation. To gain further insight into the structure-activity relationships between nitroalkenes and PPARgamma, we examined additional naturally occurring nitroalkenes derived from oleic acid, 9-nitrooleic acid (E-9-NO2-18:1 [1]) and 10-nitrooleic acid (E-10-NO2-18:1 [2]), and several synthetic nitrated enoic fatty acids of variable carbon chain length, double bonds, and nitration site.
View Article and Find Full Text PDFA series of 3-acylindole-1-benzylcarboxylic acids were designed and synthesized while searching for a PPARgamma modulator with additional moderate intrinsic PPARalpha agonistic activity. 2-[3-[[3-(4-Chlorobenzoyl)-2-methyl-6-(trifluoromethoxy)-1H-indol-1-yl]methyl]phenoxy]-(2R)-butanoic acid (12d) was identified as such an agent which demonstrated potent efficacy in lowering both glucose and lipids in multiple animal models with significantly attenuated side effects such as fluid retention and heart weight gain associated with PPARgamma full agonists. The moderate PPARalpha activity of 12d not only contributed to the agent's ability to manage lipid profiles but also appears to have potentiated its PPARgamma efficacy in lowering glucose levels in preclinical diabetic animal models.
View Article and Find Full Text PDFPeroxisome proliferator-activated receptor gamma (PPARgamma) agonists are used to treat type 2 diabetes mellitus (T2DM). Widespread use of PPARgamma agonists has been prevented due to adverse effects including weight gain, edema, and increased risk of congestive heart failure. Selective PPARgamma modulators (SPPARgammaMs) have been identified that have antidiabetic efficacy and reduced toxicity in preclinical species.
View Article and Find Full Text PDFPrevious studies demonstrated that the naturally occurring electrophile and PPARgamma ligand, nitrolinoleic acid (NO(2)-LA), exists as a mixture of four regioisomers [Alexander, R. L., et al.
View Article and Find Full Text PDFGLUT4 (glucose transporter 4) plays important roles in glucose homoeostasis in vivo. GLUT4 expression and function are diminished in diabetic human and animal subjects. The goal of the present study is to develop a cell-based assay for identifying negative regulators of GLUT4 translocation as potential targets for the treatment of Type 2 diabetes.
View Article and Find Full Text PDFBioorg Med Chem Lett
September 2008
A series of highly functionalized 3-aroyl and 3-phenoxy-2-methyl-7-azaindoles have been identified, which are potent selective PPARgamma modulators (SPPARgammaMs). Addition of substituents at the 6-position of the 7-azaindoles improves in vitro potency and pharmacokinetics. 7-Azaindoles have significantly improved off-target profiles compared to the parent indole series.
View Article and Find Full Text PDFObjective: Acute activation of G protein-coupled receptor 40 (GPR40) by free fatty acids (FFAs) or synthetic GPR40 agonists enhances insulin secretion. However, it is still a matter of debate whether activation of GPR40 would be beneficial for the treatment of type 2 diabetes, since chronic exposure to FFAs impairs islet function. We sought to evaluate the specific role of GPR40 in islets and its potential as a therapeutic target using compounds that specifically activate GPR40.
View Article and Find Full Text PDFDespite their proven antidiabetic efficacy, widespread use of peroxisome proliferator-activated receptor (PPAR)gamma agonists has been limited by adverse cardiovascular effects. To overcome this shortcoming, selective PPARgamma modulators (SPPARgammaMs) have been identified that have antidiabetic efficacy comparable with full agonists with improved tolerability in preclinical species. The results of structural studies support the proposition that SPPARgammaMs interact with PPARgamma differently from full agonists, thereby providing a physical basis for their novel activities.
View Article and Find Full Text PDFThe metabolism of vitamin A and the diverse effects of its metabolites are tightly controlled by distinct retinoid-generating enzymes, retinoid-binding proteins and retinoid-activated nuclear receptors. Retinoic acid regulates differentiation and metabolism by activating the retinoic acid receptor and retinoid X receptor (RXR), indirectly influencing RXR heterodimeric partners. Retinoic acid is formed solely from retinaldehyde (Rald), which in turn is derived from vitamin A.
View Article and Find Full Text PDF