Publications by authors named "Tarleton R"

Infection with the protozoan parasite is generally well-controlled by host immune responses, but appears to be rarely eliminated. The resulting persistent, low-level infection results in cumulative tissue damage with the greatest impact generally in the heart in the form of chagasic cardiomyopathy. The relative success in immune control of infection usually averts acute phase death but has the negative consequence that the low-level presence of in hosts is challenging to detect unequivocally.

View Article and Find Full Text PDF
Article Synopsis
  • Chagas disease is caused by a parasite and is transmitted by triatomine bugs; it poses a significant risk to humans, especially in countries like Mexico where domestic animals, like dogs, can be a source of infection.
  • A study tested 296 dogs in two Mexican cities for Chagas disease using methods like quantitative PCR and antibody assays, revealing a low prevalence of infection among dogs (3.4% positivity, with only 0.7% found through DNA testing).
  • The findings highlight the importance of dogs in monitoring the disease and the need for better diagnostic tools and surveillance in households to manage Chagas disease effectively.
View Article and Find Full Text PDF

Trypanosoma cruzi infection in dogs can cause heart failure and sudden death with few treatment options available. A litter of 4 dogs living in a T cruzi endemic area were randomized to prophylaxis and nonprophylaxis groups as part of a study evaluating a modified benznidazole dosing regimen administered twice weekly to prevent T cruzi infection during a vector transmission season. The 2 dogs that received prophylaxis remained healthy without T cruzi infection or cardiac disease for >2 years.

View Article and Find Full Text PDF

The vector-borne protozoan parasite causes Chagas disease in humans, dogs, and many other mammalian hosts. Canine Chagas disease is increasingly diagnosed in dogs of the southern United States where triatomine insect vectors occur, and there are limited veterinary testing options; only the indirect fluorescent antibody (IFA) test is offered at a single accredited diagnostic laboratory. We evaluated a multiplex microsphere immunoassay (MIA) for the detection of antibodies against in dogs and compared it with existing serologic methods to establish cutoff values and relative sensitivity and specificity.

View Article and Find Full Text PDF

Host cell invasion by Trypanosoma cruzi is a markedly silent process, with limited host transcriptional changes indicative of innate immune recognition, except for a modest type I IFN (IFN-I) response. In this study, we show that T. cruzi-induced IFN-β production was nearly abolished in primary murine cGAS-/- or stimulator of IFN genes (STING)-deficient (STINGGt) macrophages and fibroblasts.

View Article and Find Full Text PDF

, the causative agent of Chagas disease, is a zoonotic, vector-borne, protozoan hemoflagellate with a wide host range. An 11-yr-old, captive-bred male De Brazza's monkey () presented with weight loss despite normal appetite. Examination revealed hypoglycemia, nonregenerative anemia, and many trypanosomes on a blood smear.

View Article and Find Full Text PDF

Trypanosoma cruzi naturally infects a broad range of mammalian species and frequently results in the pathology that has been most extensively characterized in human Chagas disease. Currently employed treatment regimens fail to achieve parasitological cure of T. cruzi infection in the majority of cases.

View Article and Find Full Text PDF

The Chagas field has gone >50 years without tangible progress toward new therapies. My colleagues and I have recently reported on a benzoxaborole compound that achieves consistent parasitological cure in experimentally infected mice and in naturally infected non-human primates (NHPs). While these results do not assure success in human clinical trials, they significantly de-risk this process and form a strong justification for such trials.

View Article and Find Full Text PDF

naturally infects a broad range of mammalian species and frequently results in the pathology that has been most extensively characterized in human Chagas disease. Currently employed treatment regimens fail to achieve parasitological cure of infection in the majority of cases. In this study, we have extended our previous investigations of more effective, higher dose, intermittent administration protocols using the FDA-approved drug benznidazole (BNZ), in experimentally infected mice and in naturally infected dogs and non-human primates (NHP).

View Article and Find Full Text PDF

Although parasite entry through breaks in the skin or mucosa is one of the main routes of natural transmission of Trypanosoma cruzi, little is known about the host cell types initially invaded nor the ability of those host cells to initiate immune responses at the site of infection. To gain insights into these early events, we studied the fate of fluorescently tagged T. cruzi delivered subcutaneously in mouse footpads or ears.

View Article and Find Full Text PDF

Infection with the protozoan parasite Trypanosoma cruzi elicits substantial CD8+ T cell responses that disproportionately target epitopes encoded in the large trans-sialidase (TS) gene family. Within the C57BL/6 infection model, a significant proportion (30-40%) of the T. cruzi-specific CD8+ T cell response targets two immunodominant TS epitopes, TSKb18 and TSKb20.

View Article and Find Full Text PDF

Background: A drawback in the treatment of chronic Chagas disease (American trypanosomiasis) is the long time required to achieve complete loss of serological reactivity, the standard for determining treatment efficacy.

Methods: Antibody-secreting cells and memory B cells specific for Trypanosoma cruzi and their degree of differentiation were evaluated in adult and pediatric study participants with chronic Chagas disease before and after etiological treatment.

Results: T.

View Article and Find Full Text PDF

Human clinical trials are expensive, and when they fail, they create the impression that a problem is intractable, thus depressing interest in future attempts. For neglected tropical diseases, where there are likely limited numbers of "shots on goal," such failures need to be assiduously avoided. Chagas disease drug discovery efforts have experienced more than its share of human clinical trial failures.

View Article and Find Full Text PDF

Trypanosoma cruzi naturally infects a wide variety of wild and domesticated mammals, in addition to humans. Depending on the infection dose and other factors, the acute infection can be life-threatening, and in all cases, the risk of chagasic heart disease is high in persistently infected hosts. Domestic, working, and semi-feral dogs in the Americas are at significant risk of T.

View Article and Find Full Text PDF

Trypanosoma cruzi, the agent of Chagas disease, probably infects tens of millions of people, primarily in Latin America, causing morbidity and mortality. The options for treatment and prevention of Chagas disease are limited and underutilized. Here we describe the discovery of a series of benzoxaborole compounds with nanomolar activity against extra- and intracellular stages of T.

View Article and Find Full Text PDF

Chagas disease is a neglected pathology that affects millions of people worldwide, mainly in Latin America. The Chagas disease agent, Trypanosoma cruzi (T. cruzi), is an obligate intracellular parasite with a diverse biology that infects several mammalian species, including humans, causing cardiac and digestive pathologies.

View Article and Find Full Text PDF
Article Synopsis
  • A new enzyme-linked immunosorbent assay (ELISA) was developed to detect IgG antibodies against the receptor-binding domain of SARS-CoV-2, demonstrating high sensitivity and specificity for surveillance purposes.
  • The ELISA showed strong performance in testing, with results indicating that 6.5% of healthcare workers and all confirmed mild COVID-19 cases had detectable antibodies.
  • The study emphasizes the importance of using this simple assay for large-scale testing and suggests that more complex testing methods may provide better insights into individual immunity, especially in vaccinated populations.
View Article and Find Full Text PDF

In chronic Chagas disease, Trypanosoma cruzi-specific T-cell function decreases over time, and alterations in the homeostatic IL-7/IL-7R axis are evident, consistent with a process of immune exhaustion. IL-27 is an important immunoregulatory cytokine that shares T-cell signaling with IL-7 and other cytokines of the IL-12 family and might be involved in the transcriptional regulation of T-cell function. Here, we evaluated the expression and function of IL-27R in antigen-experienced T cells from subjects with chronic Chagas disease and assessed whether in vitro treatment with IL-27 and IL-7 might improve T.

View Article and Find Full Text PDF

Trypanosoma cruzi, the causative agent of human Chagas disease, is endemic to the southern region of the United States where it routinely infects many host species. The indoor/outdoor housing configuration used in many non-human primate research and breeding facilities in the southern of the USA provides the opportunity for infection by T. cruzi and thus provides source material for in-depth investigation of host and parasite dynamics in a natural host species under highly controlled and restricted conditions.

View Article and Find Full Text PDF

Background: Interruption of benznidazole therapy due to the appearance of adverse effects, which is presumed to lead to treatment failure, is a major drawback in the treatment of chronic Chagas disease.

Methods: Trypanosoma cruzi-specific humoral and T cell responses, T cell phenotype and parasite load were measured to compare the outcome in 33 subjects with chronic Chagas disease treated with an incomplete benznidazole regimen and 58 subjects treated with the complete regimen, during a median follow-up period of 48 months.

Results: Both treatment regimens induced a reduction in the T.

View Article and Find Full Text PDF

The SARS-CoV-2 pandemic and the vaccination effort that is ongoing has created an unmet need for accessible, affordable, flexible and precise platforms for monitoring the induction, specificity and maintenance of virus-specific immune responses. Herein we validate a multiplex (Luminex-based) assay capable of detecting SARS-CoV-2-specific antibodies irrespective of host species, antibody isotype, and specimen type (e.g.

View Article and Find Full Text PDF

The protozoan Trypanosoma cruzi almost invariably establishes life-long infections in humans and other mammals, despite the development of potent host immune responses that constrain parasite numbers. The consistent, decades-long persistence of T. cruzi in human hosts arises at least in part from the remarkable level of genetic diversity in multiple families of genes encoding the primary target antigens of anti-parasite immune responses.

View Article and Find Full Text PDF

A major contributor to treatment failure in Chagas disease, caused by infection with the protozoan parasite , is that current treatment regimens do not address the drug insensitivity of transiently dormant amastigotes. Here, we demonstrated that use of a currently available drug in a modified treatment regimen of higher individual doses, given less frequently over an extended treatment period, could consistently extinguish infection in three mouse models of Chagas disease. Once per week administration of benznidazole at a dose 2.

View Article and Find Full Text PDF

Myocytes express low levels of MHC class I (MHC I), perhaps influencing the ability of CD8 T cells to efficiently detect and destroy pathogens that invade muscle. infects many cell types but preferentially persists in muscle, and we asked if this tissue-dependent persistence was linked to MHC expression. Inducible enhancement of skeletal muscle MHC I in mice during the first 20 d of infection resulted in enhanced CD8-dependent reduction of parasite load.

View Article and Find Full Text PDF

In a pilot study, we showed that the intermittent administration of benznidazole in chronic Chagas disease patients resulted in a low rate of treatment suspension and therapeutic failure, as assessed by quantitative PCR (qPCR) at the end of treatment. Here, a 3-year posttreatment follow-up study of the same cohort of patients is presented. The treatment scheme consisted of 12 doses of benznidazole at 5 mg/kg of body weight/day in two daily doses every 5 days.

View Article and Find Full Text PDF