DICER1 syndrome is an autosomal-dominant disorder that results in malignant or benign tumors. A number of distinct pathogenic germline and somatic variants have been identified as causing multinodular goiter (MNG). The purpose of the present study was to identify and characterize the genetic cause underlying the familial form of MNG through a whole-exome sequencing (WES) analysis in an Argentine family with three affected siblings.
View Article and Find Full Text PDFCongenital hypothyroidism (CH) due to thyroglobulin (TG) variants causes very low serum TG levels with normal or enlarged thyroid glands, depending on the severity of the defect, and with autosomal recessive inheritance. The purpose of this study was to functionally characterize p.Cys1281Tyr variant in the TG gene in order to increase our knowledge of the molecular mechanisms associated with CH.
View Article and Find Full Text PDFThyroglobulin (TG), the predominant glycoprotein of the thyroid gland, functions as matrix protein in thyroid hormonegenesis. TG deficiency results in thyroid dyshormonogenesis. These variants produce a heterogeneous spectrum of congenital goitre, with an autosomal recessive mode of inheritance.
View Article and Find Full Text PDFThyroid peroxidase (TPO) is a membrane-bound glycoprotein located at the apical side of the thyroid follicular cells that catalyzes both iodination and coupling of iodotyrosine residues within the thyroglobulin molecule, leading to the synthesis of thyroid hormone. Variants in TPO cause congenital hypothyroidism (CH) by iodide organification defect and are commonly inherited in an autosomal recessive fashion. In the present work, we report a detailed population analysis and bioinformatic prediction of the TPO variants indexed in the Genome Aggregation Database (gnomAD) v2.
View Article and Find Full Text PDFThyroglobulin (TG) is a large glycosylated protein of 2767 amino acids, secreted by the thyrocytes into the follicular lumen. It plays an essential role in the process of thyroid hormone synthesis. TG gene variants lead to permanent congenital hypothyroidism.
View Article and Find Full Text PDFComplete absence of thyroid hormone is incompatible with life in vertebrates. Thyroxine is synthesized within thyroid follicles upon iodination of thyroglobulin conveyed from the endoplasmic reticulum (ER), via the Golgi complex, to the extracellular follicular lumen. In congenital hypothyroidism from biallelic thyroglobulin mutation, thyroglobulin is misfolded and cannot advance from the ER, eliminating its secretion and triggering ER stress.
View Article and Find Full Text PDFThyroglobulin (TG) plays a main role in the biosynthesis of thyroid hormones (TH), and, thus, it is involved in a wide range of vital functions throughout the life cycle of all vertebrates. Deficiency of TH production due to TG genetic variants causes congenital hypothyroidism (CH), with devastating consequences such as intellectual disability and impaired growth if untreated. To this day, 229 variations in the human TG gene have been identified while the 3D structure of TG has recently appeared.
View Article and Find Full Text PDFThyroglobulin (TG) is a homodimeric glycoprotein synthesized by the thyroid gland. To date, two hundred twenty-seven variations of the TG gene have been identified in humans. Thyroid dyshormonogenesis due to TG gene mutations have an estimated incidence of approximately 1 in 100,000 newborns.
View Article and Find Full Text PDFThyroglobulin (TG), a large glycosylated protein secreted by thyrocytes into the thyroid follicular lumen, plays an essential role in thyroid hormone biosynthesis. Rattus norvegicus TG (rTG) is encoded by a large single copy gene, 186-kb long, located on chromosome 7 composed of 48 exons encoding a 8461-kb mRNA. Although the TG gene displays sequence variability, many missense mutations do not impose any adverse effect on the TG protein, whereas other nucleotide substitutions may affect its TG stability and/or TG intracellular trafficking.
View Article and Find Full Text PDFPrimary congenital hypothyroidism (CH) is the most common endocrine disease in children and one of the most common preventable causes of both cognitive and motor deficits. CH is a heterogeneous group of thyroid disorders in which inadequate production of thyroid hormone occurs due to defects in proteins involved in the gland organogenesis (dysembryogenesis) or in multiple steps of thyroid hormone biosynthesis (dyshormonogenesis). Dysembryogenesis is associated with genes responsible for the development or growth of thyroid cells: such as NKX2-1, FOXE1, PAX8, NKX2-5, TSHR, TBX1, CDCA8, HOXD3 and HOXB3 resulting in agenesis, hypoplasia or ectopia of thyroid gland.
View Article and Find Full Text PDFMassive parallel sequencing technologies are facilitating the faster identification of sequence variants with the consequent capability of untangling the molecular bases of many human genetic syndromes. However, it is not always easy to understand the impact of novel variants, especially for missense changes, which can lead to a spectrum of phenotypes. This study presents a custom-designed multistep methodology to evaluate the impact of novel variants aggregated in the genome aggregation database for the HBB, HBA2, and HBA1 genes, by testing and improving its performance with a dataset of previously described alterations affecting those same genes.
View Article and Find Full Text PDFHemoglobin (Hb) synthesis is a complex, well-coordinated process that requires molecular chaperones. These intervene in different steps: regulating epigenetic mechanisms necessary for the adequate expression of the α- and β-globin clusters, binding the nascent peptides and helping them acquire their native structure, preventing oxidative damage by free globin chains and preventing the cleavage of essential erythroid transcription factors. This study analyzed the distribution of the single nucleotide polymorphism (SNP) rs4296276 in intron 1 of the α-globin chaperone α Hb-stabilizing protein (AHSP) in the Argentinean population.
View Article and Find Full Text PDFHemoglobinopathies are the most common autosomal recessive disorders and are mostly inherited in a recessive manner. However, certain mutations can affect the globin chain stability, leading to dominant forms of thalassemia. The aim of this work was the molecular and structural characterization of two heterozygous in-frame deletions, leading to β-globin variants in pediatric patients in Argentina.
View Article and Find Full Text PDFThyroid dyshormonogenesis due to thyroglobulin (TG) gene mutations have an estimated incidence of approximately 1 in 100,000 newborns. The clinical spectrum ranges from euthyroid to mild or severe hypothyroidism. Up to now, one hundred seventeen deleterious mutations in the TG gene have been identified and characterized.
View Article and Find Full Text PDFIodide Handling Disorders lead to defects of the biosynthesis of thyroid hormones (thyroid dyshormonogenesis, TD) and thereafter congenital hypothyroidism (CH), the most common endocrine disease characterized by low levels of circulating thyroid hormones. The prevalence of CH is 1 in 2000-3000 live births. Prevention of CH is based on prenatal diagnosis, carrier identification, and genetic counseling.
View Article and Find Full Text PDFCongenital hypothyroidism affects 1:2000-3000 newborns detected by neonatal screening programs. Dual oxidases, DUOX1 and 2, generate hydrogen peroxide needed for the thyroid hormone synthesis. Hipotiroidismo congénito transitorio por defectos bialélicos del gen DUOX2.
View Article and Find Full Text PDFIodide Organification defects (IOD) represent 10% of cases of congenital hypothyroidism (CH) being the main genes affected that of TPO (thyroid peroxidase) and DUOX2 (dual oxidasa 2). From a patient with clinical and biochemical criteria suggestive with CH associated with IOD, TPO and DUOX2 genes were analyzed by means of PCR-Single Strand Conformation Polymorphism analysis and sequencing. A novel heterozygous compound to the mutations c.
View Article and Find Full Text PDFSeveral patients were identified with dyshormonogenesis caused by mutations in the thyroglobulin (TG) gene. These defects are inherited in an autosomal recessive manner and affected individuals are either homozygous or compound heterozygous for the mutations. The aim of the present study was to identify new TG mutations in a patient of Vietnamese origin affected by congenital hypothyroidism, goiter and low levels of serum TG.
View Article and Find Full Text PDFMol Cell Endocrinol
March 2015
Background: Human thyroperoxidase (hTPO) is a membrane-bound glycoprotein located at the apical membrane of the thyroid follicular cells which catalyzes iodide oxidation and organification in the thyroglobulin (TG) tyrosine residues, leading to the thyroid hormone synthesis by coupling of iodotyrosine residues. Mutations in hTPO gene are the main cause of iodine organification defects (IOD) in infants.
Methods: We investigated the functional impact of hTPO gene missense mutations previously identified in our laboratory (p.
The objective of this study was to perform genetic analysis in three brothers of Turkish origin born from consanguineus parents and affected by congenital hypothyroidism, goiter and low levels of serum TG. The combination of sequencing of DNA, PCR mapping, quantitative real-time PCR, inverse-PCR (I-PCR), multiplex PCR and bioinformatics analysis were used in order to detect TG mutations. We demonstrated that the three affected siblings are homozygous for a DNA inversion of 16,962bp in the TG gene associated with two deleted regions at both sides of the inversion limits.
View Article and Find Full Text PDFThe thyroglobulin (TG) gene is organized in 48 exons, spanning over 270 kb on human chromosome 8q24. Up to now, 62 inactivating mutations in the TG gene have been identified in patients with congenital goiter and endemic or non-endemic simple goiter. The purpose of the present study was to identify and characterize new mutations in the TG gene.
View Article and Find Full Text PDF