In the past decade, low-field NMR relaxation and diffusion measurements in grossly inhomogeneous fields have been used to characterize properties of porous media, e.g., porosity and permeability.
View Article and Find Full Text PDFIn the past decade, low-field NMR relaxation and diffusion measurements in grossly inhomogeneous fields have been used to characterize pore size distribution of porous media. Estimation of these distributions from the measured magnetization data plays a central role in the inference of insitu petro-physical and fluid properties such as porosity, permeability, and hydrocarbon viscosity. In general, inversion of the relaxation and/or diffusion distribution from NMR data is a non-unique and ill-conditioned problem.
View Article and Find Full Text PDFThis paper provides a theoretical basis to directly estimate moments of transverse relaxation time T(2) from measured CPMG data in grossly inhomogeneous fields. These moments
This paper describes a new method for computing moments of the transverse relaxation time T(2) from measured CPMG data. This new method is based on Mellin transform of the measured data and its time-derivatives. The Mellin transform can also be used to compute the cumulant generating function of lnT(2).
View Article and Find Full Text PDFThe contrast-source stress-velocity integral-equation formulation of three-dimensional time-domain elastodynamic scattering problems is discussed. A novel feature of the formulation is a tensor partitioning of the relevant dynamic stress and the contrast source volume density of deformation rate. The partitioning highlights several features about the structure of the formulation.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
September 2007
This study focuses on the inverse scattering of objects embedded in a homogeneous elastic background. The medium is probed by ultrasonic sources, and the scattered fields are observed along a receiver array. The goal is to retrieve the shape, location, and constitutive parameters of the objects through an inversion procedure.
View Article and Find Full Text PDFIEEE Trans Image Process
November 2004
In this work, an iterative inversion algorithm for deblurring and deconvolution is considered. The algorithm is based on the conjugate gradient scheme and uses the so-called weighted L2-norm regularizer to obtain a reliable solution. The regularizer is included as a multiplicative constraint.
View Article and Find Full Text PDFThe problem of inferring unknown geometry and material parameters of a waveguide model from noisy samples of the associated modal dispersion curves is considered. In a significant reduction of the complexity of a common inversion methodology, the inner of two nested iterations is eliminated: The approach described does not employ explicit fitting of the data to computed dispersion curves. Instead, the unknown parameters are adjusted to minimize a cost function derived directly from the determinant of the boundary condition system matrix.
View Article and Find Full Text PDF