Introduction: Bacterial infections caused by different strains of bacteria still one of the most important disorders affecting humans worldwide. Polymers nanocomposite systems could be considered as an alternative to conventional antibiotics to eradicate bacterial infections.
Significance: In an attempt to enhance the antibacterial performance of silver and iron oxide nanoparticles, decrease their aggregation and toxicity, a polymeric hybrid nanocomposite system combining both nanoparticles is produced.
Gene editing technologies (GETs) could induce gene knockdown or gene knockout for biomedical applications. The clinical success of gene silence by RNAi therapies pays attention to other GETs as therapeutic approaches. This review aims to highlight GETs, categories, mechanisms, challenges, current use, and prospective applications.
View Article and Find Full Text PDFThis study aims to highlight the potential use of cTNAs in therapeutic applications. The COVID-19 pandemic has led to significant use of coding therapeutic nucleic acids (cTNAs) in terms of DNA and mRNA in the development of vaccines. The use of cTNAs resulted in a paradigm shift in the therapeutic field.
View Article and Find Full Text PDFTumor necrosis factor (TNF-) and inflammatory cytokine (IL-6) play a vital role in various cellular incidents such as the proliferation and death of cells during carcinogenesis. Hence, regulation of these biomarkers could be a promising tool for controlling tumor progression using nanoformulations. Silver nanoparticles-poly (vinyl pyrrolidone) (AgNPs-PVP) were prepared using the reduction of silver nitrate and stabilized with PVP.
View Article and Find Full Text PDFThe study aimed to develop a new glutathione (GSH) oral formulation to enhance the delivery of GSH and counter the nephrotoxicity of the anticancer drug, cyclophosphamide (CP). A nanostructured lipid carrier glutathione formulation (GSH-NLCs) composed of glutathione (500 mg), stearic and oleic acid (300 mg, each), and Tween 80 (2%, /) was prepared through the emulsification-solvent-evaporation technique, which exhibited a 452.4 ± 33.
View Article and Find Full Text PDFIntracellular compartment drug delivery is a promising strategy for the treatment of diseases. By this way, medicines can delivered to particular intracellular compartments. This maximizes the therapeutic efficacy and safety of medicines, particularly of anticancer and antiviral drugs.
View Article and Find Full Text PDF