Publications by authors named "Tarek Hamouda"

Genital herpes is a sexually transmitted disease representing a major global health concern. Currently, there is no approved vaccine and existing antiviral therapies exhibit limited efficacy. Herein, we describe an intranasal (IN) vaccine comprised of HSV-2 surface glycoproteins gD2 and gB2 formulated in a nanoemulsion adjuvant (NE01-gD2/gB2).

View Article and Find Full Text PDF

Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb) is contracted via aerosol infection, typically affecting the lungs. Mycobacterium bovis bacillus Calmette-Guerin (BCG) is the only licensed vaccine and has variable efficacy in protecting against pulmonary TB. Additionally, chemotherapy is associated with low compliance contributing to development of multidrug-resistant (MDR) and extensively drug-resistant (XDR) Mtb.

View Article and Find Full Text PDF

Respiratory Syncytial Virus is a leading cause of bronchiolitis and pneumonia in infants, the elderly and individuals with compromised immune systems. Despite decades of research, there is currently no available vaccine for RSV. Our group has previously demonstrated that intranasal immunization of mice with RSV inactivated by and adjuvanted with W805EC nanoemulsion elicits robust humoral and cellular immune responses, resulting in protection against RSV infection.

View Article and Find Full Text PDF

Vaccine adjuvants have been reported to induce both mucosal and systemic immunity when applied to mucosal surfaces and this dual response appears important for protection against certain pathogens. Despite the potential advantages, however, no mucosal adjuvants are currently approved for human use. Evaluating compounds as mucosal adjuvants is a slow and costly process due to the need for lengthy animal immunogenicity studies.

View Article and Find Full Text PDF

Respiratory Syncytial Virus (RSV) is a ubiquitous virus that infects almost all people by age two and is a major source of respiratory illness in infants, the elderly and others with compromised immune systems. Currently there is no available vaccine. Prior efforts using formalin-inactivated RSV (FI-RSV) were associated with enhanced respiratory disease upon viral exposure following clinical vaccine trials.

View Article and Find Full Text PDF

Currently available influenza vaccines provide suboptimal protection. In order to improve the quality of protective immune responses elicited following vaccination, we developed an oil-in-water nanoemulsion (NE)-based adjuvant for an intranasally-delivered inactivated influenza vaccine. Using a prime-boost vaccination regimen, we show that intranasal vaccines containing the W(80)5EC NE elicited higher titers of serum hemagglutination inhibiting (HAI) antibody and influenza-specific IgG and IgA titers compared to vaccines that did not contain the NE.

View Article and Find Full Text PDF

Background: Respiratory syncytial virus (RSV) is a leading cause of bronchiolitis and pneumonia in young children worldwide, and no vaccine is currently available. Inactivated RSV vaccines tested in the 1960's led to vaccine-enhanced disease upon viral challenge, which has undermined RSV vaccine development. RSV infection is increasingly being recognized as an important pathogen in the elderly, as well as other individuals with compromised pulmonary immunity.

View Article and Find Full Text PDF

NB-1008 is a surfactant-stabilized soybean oil-in-water nanoemulsion (NE) adjuvant with influenza virus antigen incorporated into the NE by simple mixing. Intranasal administration of the antigen with NE adjuvant efficiently produces both mucosal and serum antibody responses as well as a robust cellular Th1 immune response. To demonstrate the adjuvant effect of the W(80)5EC NE, a killed commercial influenza vaccine for intramuscular administration (Fluzone or Fluvirin) was mixed with the W(80)5EC NE adjuvant and administered intranasally to naïve ferrets.

View Article and Find Full Text PDF

Mutations of influenza virus increase concerns of worldwide epidemics resulting from the newly emergent strains. Current influenza vaccines are inefficient and require annual vaccinations. W805EC adjuvant is an oil-in-water emulsion composed of nanodroplets with an average diameter of approximately 400 nm.

View Article and Find Full Text PDF

Background: Nanoemulsions are broadly antimicrobial oil-in-water emulsions containing nanometer-sized droplets stabilized with surfactants. We hypothesize that topical application of a nanoemulsion compound (NB-201) can attenuate burn wound infection. In addition to reducing infection, nanoemulsion therapy may modulate dermal inflammatory signaling and thereby lessen inflammation following thermal injury.

View Article and Find Full Text PDF

Nanoemulsion, a water-in-oil formulation stabilized by small amounts of surfactant, is non-toxic to mucous membranes and produces biocidal activity against enveloped viruses. We evaluated nanoemulsion as an adjuvant for mucosal influenza vaccines. Mice (C3H/HeNHsd strain) were vaccinated intranasally with 5 x 10(5) plaque forming units (pfu) of influenza A virus (Ann Arbor/6/60 strain) and a nanoemulsion mixture.

View Article and Find Full Text PDF

Surfactant nanoemulsions are water in oil preparations that proved to have a broad spectrum biocidal activity against a variety of microorganisms including Gram-positive and Gram-negative bacteria, spores and enveloped viruses. These preparations are non-toxic to the skin, mucous membrane and gastrointestinal tissues at biocidal concentrations. In this study, 0.

View Article and Find Full Text PDF

Influenza A viral infection begins by hemagglutinin glycoproteins on the viral envelope binding to cell membrane sialic acid (SA). Free SA monomers cannot block hemagglutinin adhesion in vivo because of toxicity. Polyvalent, generation 4 (G4) SA-conjugated polyamidoamine (PAMAM) dendrimer (G4-SA) was evaluated as a means of preventing adhesion of 3 influenza A subtypes (H1N1, H2N2, and H3N2).

View Article and Find Full Text PDF