Publications by authors named "Tarek Dishisha"

Background: Propionic acid fermentation from renewable feedstock suffers from low volumetric productivity and final product concentration, which limits the industrial feasibility of the microbial route. High cell density fermentation techniques overcome these limitations. Here, propionic acid (PA) production from glucose and a crude glycerol/glucose mixture was evaluated using Acidipropionibacterium acidipropionici, in high cell density (HCD) batch fermentations with cell recycle.

View Article and Find Full Text PDF

The emergence of antibiotic-resistant and phage-resistant strains of Mycobacterium tuberculosis (M. tuberculosis) necessitates improving new therapeutic plans. The objective of the current work was to ensure the effectiveness of rifampicin and the mycobacteriophage LysB D29 (LysB)enzyme in the treatment of multi-drug resistant tuberculosis (MDR-TB) infection, where new and safe metal-organic framework (MOF) nanoparticles were used in combination.

View Article and Find Full Text PDF

In a precarious world of rapidly growing pandemics, the field of vaccine production has witnessed considerable growth. Bacillus Calmette-Guérin (BCG) is a live-attenuated vaccine and a part of the immunization program in 157 countries. The quality control is based on a potency test through viable cell enumeration.

View Article and Find Full Text PDF

Background: Microbial production of propionic acid (PA) from renewable resources is limited by the slow growth of the producer bacteria and product-mediated inhibition. The present study evaluates high cell density continuous PA fermentation from glycerol (Gly) using Acidipropionibacterium acidipropionici DSM 4900 in a membrane-based cell recycling system. A ceramic tubular membrane filter of 0.

View Article and Find Full Text PDF

Background: Irinotecan is a chemotherapeutic agent used to treat a variety of tumors, including colorectal cancer (CRC). In the intestine, it is transformed into SN-38 by gut microbial enzymes, which is responsible for its toxicity during excretion.

Objective: Our study highlights the impact of Irinotecan on gut microbiota composition and the role of probiotics in limiting Irinotecan-associated diarrhea and suppressing gut bacterial β-glucuronidase enzymes.

View Article and Find Full Text PDF

Background And Objectives: Dental caries is a breakdown of the teeth enamel due to harmful bacteria, lack of oral hygiene, and sugar consumption. The acid-producing bacterium is the leading cause of dental caries. Dextranase is an enzyme that can degrade dextran to low molecular weight fractions, which have many therapeutic and industrial applications.

View Article and Find Full Text PDF

The use of metal/metal oxide nanoparticles (NPs) in consumer products has increased dramatically. Accordingly, human exposure to these NPs has increased. , a member of the beneficial gut microbiota, is essential for human health.

View Article and Find Full Text PDF

The rising antimicrobial resistance is particularly alarming for , calling for the discovery and evaluation of alternatives to treat infections. Some bacteriophages produce a structural protein that depolymerizes capsular exopolysaccharide. Such purified depolymerases are considered as novel antivirulence compounds.

View Article and Find Full Text PDF

Bacteriophage-encoded lysins are increasingly reported as alternatives to combat Acinetobacter baumannii infections, for which limited therapeutic options are available. Some lysins, such as LysMK34, have a C-terminal amphipathic helix allowing them to penetrate the otherwise-impermeable outer membrane barrier. Another approach to kill Gram-negative pathogens with lysins relies on fusion of a peptide with outer membrane-permeabilizing properties to the lysin.

View Article and Find Full Text PDF

Background: Ventilator-associated pneumonia (VAP) is a major health problem for people intubated in intensive care units (ICUs), leading to increased mortality rates, hospital stay, and treatment costs. In the present study, the core pathogens causing VAP in Beni-Suef University's Hospital, Egypt, was investigated over a study period of 2 years (2017-2019).

Results: Of a total of 213 patients subjected to mechanical ventilation, 60 have developed VAP during their stay in the ICU.

View Article and Find Full Text PDF

Yangia sp. ND199 is a moderately halophilic bacterium isolated from mangrove samples in Northern Vietnam, which was earlier reported to grow on several sugars and glycerol to accumulate poly(hydroxyalkanoates) (PHA). In this study, the potential of the bacterium for co-production of exopolysaccharides (EPS) and PHA was investigated.

View Article and Find Full Text PDF

Asymmetric oxidation of prochiral sulfides is a direct means for production of enantiopure sulfoxides which are important in organic synthesis and the pharmaceutical industry. In the present study, GLA.0 was employed for stereoselective oxidation of prochiral sulfides.

View Article and Find Full Text PDF

The prevalence of extensively and pandrug-resistant strains of leaves little or no therapeutic options for treatment for this bacterial pathogen. Bacteriophages and their lysins represent attractive alternative antibacterial strategies in this regard. We used the extensively drug-resistant strain MK34 to isolate the bacteriophage PMK34 (vB_AbaP_PMK34).

View Article and Find Full Text PDF

Lytic polysaccharide monooxygenases (LPMOs) are relatively new enzymes that have been discovered 10 years ago. LPMOs comprise a diverse group of enzymes which play a pivotal role in the depolymerization of sugar-based biopolymers including cellulose, hemicellulose, chitin, and starch. Their mechanism of action relies on the correct coordination of a copper ion in the active site, which is partly composed of the N-terminal histidine.

View Article and Find Full Text PDF

Mycobacteriophages possess different sets of lytic enzymes for disruption of the complex cell envelope of the mycobacteria host cells and release of the viral progeny. Lysin B (LysB) enzymes are mycolylarabinogalactan esterases that cleave the ester bond between the arabinogalactan and mycolic acids in the mycolylarabinogalactan-peptidoglycan (mAGP) complex in the cell envelope of mycobacteria. In the present study, four LysB enzymes were produced recombinantly and characterized with respect to their enzymatic and antibacterial activities.

View Article and Find Full Text PDF

Mycobacteriophage endolysins have emerged as a potential alternative to the current antimycobacterial agents. This study focuses on mycolylarabinogalactan hydrolase (LysB) enzymes of the α/β-hydrolase family, which disrupt the unique mycolic acid layer of mycobacterium cell wall. Multiple sequence alignment and structural analysis studies showed LysB-D29, the only enzyme with a solved three-dimensional structure, to share several common features with esterases (lacking lid domain) and lipases (acting on long chain lipids).

View Article and Find Full Text PDF

Microbial geotechnology is the use of microorganisms and/or their derivatives to alter engineering properties of soil for improving its stability, strength and stiffness. Ureases hydrolyze urea in the soil leading to CaCO precipitation, which binds soil particles together (biocementation). In the present study, nine Egyptian soils were screened for urease-producing bacteria, 15 isolates were obtained, and optimum urease producers were identified.

View Article and Find Full Text PDF

The therapeutic potential of phages has been considered since their first identification more than a century ago. The evident concept of using a natural predator to treat bacterial infections has, however, since then been challenged considerably. Initially, the vast success of antibiotics almost eliminated the study of phages for therapy.

View Article and Find Full Text PDF

Lactobacillus reuteri metabolizes glycerol through propanediol-utilization (Pdu) pathway to 1,3-propanediol (1,3-PD) via 3-hydroxypropionaldehyde (3-HPA) as intermediate. In the resting cells, the oxidized co-factor obtained in the reaction is regenerated by simultaneous oxidation of 3-HPA to 3-hydroxypropionic acid (3-HP) using propionaldehyde dehydrogenase (PduP), phosphotransacylase (PduL) and propionate kinase (PduW). We have earlier shown that the use of resting cells of recombinant Escherichia coli expressing the oxidative pathway gives the highest theoretical yield of 1 mol 3-HP per mol 3-HPA but is limited by cofactor depletion.

View Article and Find Full Text PDF

Lactic acid bacteria constitute a diverse group of industrially significant, safe microorganisms that are primarily used as starter cultures and probiotics, and are also being developed as production systems in industrial biotechnology for biocatalysis and transformation of renewable feedstocks to commodity- and high-value chemicals, and health products. Development of strains, which was initially based mainly on natural approaches, is also achieved by metabolic engineering that has been facilitated by the availability of genome sequences and genetic tools for transformation of some of the bacterial strains. The aim of this paper is to provide a brief overview of the potential of lactic acid bacteria as biological catalysts for production of different organic compounds for food and non-food sectors based on their diversity, metabolic- and stress tolerance features, as well as the use of genetic/metabolic engineering tools for enhancing their capabilities.

View Article and Find Full Text PDF

Antibacterial bionanostructures were produced from cellulose nanocrystals (CNC) with immobilized lysozyme from hen egg white (HEW) and T4 bacteriophage, respectively. The nanocrystals were prepared from microcrystalline cellulose by ammonium persulfate oxidation with a yield of 68% and having an average size of 250 nm and low polydispersity index. HEW lysozyme (HEWL) and T4 lysozyme (T4L) were immobilized to CNC by different mechanisms including adsorption and covalent coupling to carbodiimide-activated carboxylate groups and to glutaraldehyde-activated aminated CNC (Am-CNC), respectively.

View Article and Find Full Text PDF

Crosslinked, cryostructured monoliths prepared from Lactobacillus reuteri cells were evaluated as potential immobilized whole-cell biocatalyst for conversion of glycerol, to potentially important chemicals for the biobased industry, i.e. 3-hydroxypropionaldehyde (3HPA), 3-hydroxypropionic acid (3HP) and 1,3-propanediol (1,3PDO).

View Article and Find Full Text PDF

A thermophilic bacterial strain, Geobacillus sp. ZGt-1, isolated from Zara hot spring in Jordan, was capable of inhibiting the growth of the thermophilic G. stearothermophilus and the mesophilic Bacillus subtilis and Salmonella typhimurium on a solid cultivation medium.

View Article and Find Full Text PDF

Multifunctional chemicals including hydroxycarboxylic acids are gaining increasing interest due to their growing applications in the polymer industry. One approach for their production is a biological selective oxidation of polyols, which is difficult to achieve by conventional chemical catalysis. In the present study, trimethylolpropane (TMP), a trihydric alcohol, was subjected to selective oxidation using growing cells of Corynebacterium sp.

View Article and Find Full Text PDF

Background: 3-Hydroxypropionic acid (3HP) and acrylic acid (AA) are industrially important platform- and secondary chemical, respectively. Their production from renewable resources by environment-friendly processes is desirable. In the present study, both chemicals were almost quantitatively produced from biodiesel-derived glycerol by an integrated process involving microbial and chemical catalysis.

View Article and Find Full Text PDF