Publications by authors named "Tarek Deeb"

LMTK3 is a brain-specific transmembrane serine/threonine protein kinase that acts as a scaffold for protein phosphatase-1 (PP1). Although LMKT3 has been identified as a risk factor for autism and epilepsy, its physiological significance is unknown. Here, we demonstrate that LMTK3 copurifies and binds to KCC2, a neuron-specific K/Cl transporter.

View Article and Find Full Text PDF

Hyperpolarizing GABAR currents, the unitary events that underlie synaptic inhibition, are dependent upon efficient Cl extrusion, a process that is facilitated by the neuronal specific K/Cl co-transporter KCC2. Its activity is also a determinant of the anticonvulsant efficacy of the canonical GABAR-positive allosteric: benzodiazepines (BDZs). Compromised KCC2 activity is implicated in the pathophysiology of status epilepticus (SE), a medical emergency that rapidly becomes refractory to BDZ (BDZ-RSE).

View Article and Find Full Text PDF

First-in-line benzodiazepine treatment fails to terminate seizures in about 30% of epilepsy patients, highlighting a need for novel anti-seizure strategies. It is emerging that impaired K+/Cl- cotransporter 2 (KCC2) activity leads to deficits in GABAergic inhibition and increased seizure vulnerability in patients. In neurons, the with-no-lysine (WNK) kinase-STE20/SPS1-related proline/alanine-rich (SPAK) kinase signalling pathway inhibits KCC2 activity via T1007 phosphorylation.

View Article and Find Full Text PDF

Kcc2 plays a critical role in determining the efficacy of synaptic inhibition, however, the cellular mechanisms neurons use to regulate its membrane trafficking, stability and activity are ill-defined. To address these issues, we used affinity purification to isolate stable multi-protein complexes of K-Cl Co-transporter 2 (Kcc2) from the plasma membrane of murine forebrain. We resolved these using blue-native polyacrylamide gel electrophoresis (BN-PAGE) coupled to LC-MS/MS and label-free quantification.

View Article and Find Full Text PDF

Addictive drugs usurp the brain's intrinsic mechanism for reward, leading to compulsive and destructive behaviors. In the ventral tegmental area (VTA), the center of the brain's reward circuit, GABAergic neurons control the excitability of dopamine (DA) projection neurons and are the site of initial psychostimulant-dependent changes in signaling. Previous work established that cocaine/methamphetamine exposure increases protein phosphatase 2A (PP2A) activity, which dephosphorylates the GABAR2 subunit, promotes internalization of the GABA receptor (GABAR) and leads to smaller GABAR-activated G-protein-gated inwardly rectifying potassium (GIRK) currents in VTA GABA neurons.

View Article and Find Full Text PDF

A robust body of evidence supports the concept that phosphodiesterase 10A (PDE10A) activity in the basal ganglia orchestrates the control of coordinated movement in human subjects. Although human mutations in the PDE10A gene manifest in hyperkinetic movement disorders that phenocopy many features of early Huntington's disease, characterization of the maladapted molecular mechanisms and aberrant signaling processes that underpin these conditions remains scarce. Recessive mutations in the GAF-A domain have been shown to impair PDE10A function due to the loss of striatal PDE10A protein levels, but here we show that this paucity is caused by irregular intracellular trafficking and increased PDE10A degradation in the cytosolic compartment.

View Article and Find Full Text PDF

The combination of in vitro multi-electrode arrays (MEAs) and the neuronal differentiation of stem cells offers the capability to study human neuronal networks from patient or engineered human cell lines. Here, we use MEA-based assays to probe synaptic function and network interactions of hiPSC-derived neurons. Neuronal network behaviour first emerges at approximately 30 days of culture and is driven by glutamate neurotransmission.

View Article and Find Full Text PDF

GABA receptor-mediated currents shift from excitatory to inhibitory during postnatal brain development in rodents. A postnatal increase in KCC2 protein expression is considered to be the sole mechanism controlling the developmental onset of hyperpolarizing synaptic transmission, but here we identify a key role for KCC2 phosphorylation in the developmental E shift. Preventing phosphorylation of KCC2 at either residue serine 940 (S940), or at residues threonine 906 and threonine 1007 (T906/T1007), delayed or accelerated the postnatal onset of KCC2 function, respectively.

View Article and Find Full Text PDF

The type 2 K/Cl cotransporter (KCC2) allows neurons to maintain low intracellular levels of Cl, a prerequisite for efficient synaptic inhibition. Reductions in KCC2 activity are evident in epilepsy; however, whether these deficits directly contribute to the underlying pathophysiology remains controversial. To address this issue, we created knock-in mice in which threonines 906 and 1007 within KCC2 have been mutated to alanines (KCC2-T906A/T1007A), which prevents its phospho-dependent inactivation.

View Article and Find Full Text PDF

Fast inhibitory synaptic transmission is mediated by γ-aminobutyric acid type A receptors (GABARs) that are enriched at functionally diverse synapses via mechanisms that remain unclear. Using isothermal titration calorimetry and complementary methods we demonstrate an exclusive low micromolar binding of collybistin to the α2-subunit of GABARs. To explore the biological relevance of collybistin-α2-subunit selectivity, we generate mice with a mutation in the α2-subunit-collybistin binding region (Gabra2-1).

View Article and Find Full Text PDF

Mesial temporal lobe epilepsy (mTLE) is the most common form of epilepsy, believed to arise in part from compromised GABAergic inhibition. The neuronal specific K/Cl co-transporter 2 (KCC2) is a critical determinant of the efficacy of GABAergic inhibition and deficits in its activity are observed in mTLE patients and animal models of epilepsy. To test if reductions of KCC2 activity directly contribute to the pathophysiology of mTLE, we locally ablated KCC2 expression in a subset of principal neurons within the adult hippocampus.

View Article and Find Full Text PDF

apoE is the primary lipid carrier within the CNS and the strongest genetic risk factor for late onset Alzheimer's disease (AD). apoE is primarily lipidated via ABCA1, and both are under transcriptional regulation by the nuclear liver X receptor (LXR). Considerable evidence from genetic (using ABCA1 overexpression) and pharmacological (using synthetic LXR agonists) studies in AD mouse models suggests that increased levels of lipidated apoE can improve cognitive performance and, in some strains, can reduce amyloid burden.

View Article and Find Full Text PDF

KCC2 is a neuron specific K-Cl co-transporter that controls neuronal chloride homeostasis, and is critically involved in many neurological diseases including brain trauma, epilepsies, autism and schizophrenia. Despite significant accumulating data on the biology and electrophysiological properties of KCC2, structure-function relationships remain poorly understood. Here we used calixarene detergent to solubilize and purify wild-type non-aggregated and homogenous KCC2.

View Article and Find Full Text PDF

K/Cl cotransporter 2 (KCC2) is selectively expressed in the adult nervous system and allows neurons to maintain low intracellular Cl levels. Thus, KCC2 activity is an essential prerequisite for fast hyperpolarizing synaptic inhibition mediated by type A γ-aminobutyric acid (GABA) receptors, which are Cl-permeable, ligand-gated ion channels. Consistent with this, deficits in the activity of KCC2 lead to epilepsy and are also implicated in neurodevelopmental disorders, neuropathic pain, and schizophrenia.

View Article and Find Full Text PDF

Estrogen plays a critical role in many physiological processes and exerts profound effects on behavior by regulating neuronal excitability. While estrogen has been established to exert effects on dendritic morphology and excitatory neurotransmission its role in regulating neuronal inhibition is poorly understood. Fast synaptic inhibition in the adult brain is mediated by specialized populations of γ-c a receptors (GABARs) that are selectively enriched at synapses, a process dependent upon their interaction with the inhibitory scaffold protein gephyrin.

View Article and Find Full Text PDF

Deficits in GABAergic inhibition result in the abnormal neuronal activation and synchronization that underlies seizures. However, the molecular mechanisms responsible for transforming a normal brain into an epileptic one remain largely unknown. Hyperpolarizing inhibition mediated by type A GABA (GABA) receptors is dependent on chloride extrusion by the neuron-specific type 2K-Cl cotransporter (KCC2).

View Article and Find Full Text PDF

Mutations in the gene , which encodes TAR DNA-binding protein 43 (TDP-43), are a rare cause of familial forms of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). While the majority of mutations are found in the C-terminal glycine-rich domain, an alanine to valine amino acid change at position 90 (A90V) in the bipartite nuclear localization signal (NLS) of TDP-43 has been described. This sequence variant has previously been shown to cause cytoplasmic mislocalization of TDP-43 and decrease protein solubility, leading to the formation of insoluble aggregates.

View Article and Find Full Text PDF

The behavioral and anatomical deficits seen in fragile X syndrome (FXS) are widely believed to result from imbalances in the relative strengths of excitatory and inhibitory neurotransmission. Although modified neuronal excitability is thought to be of significance, the contribution that alterations in GABAergic inhibition play in the pathophysiology of FXS are ill defined. Slow sustained neuronal inhibition is mediated by γ-aminobutyric acid type B (GABA) receptors, which are heterodimeric G-protein-coupled receptors constructed from R1a and R2 or R1b and R2 subunits.

View Article and Find Full Text PDF

Impaired neuronal inhibition has long been associated with the increased probability of seizure occurrence and heightened seizure severity. Fast synaptic inhibition in the brain is primarily mediated by the type A γ-aminobutyric acid receptors (GABAARs), ligand-gated ion channels that can mediate Cl(-) influx resulting in membrane hyperpolarization and the restriction of neuronal firing. In most adult brain neurons, the K(+)/Cl(-) co-transporter-2 (KCC2) establishes hyperpolarizing GABAergic inhibition by maintaining low [Cl(-)]i.

View Article and Find Full Text PDF

The accumulation of γ-aminobutyric acid receptors (GABAARs) at the appropriate postsynaptic sites is critical for determining the efficacy of fast inhibitory neurotransmission. Although we know that the majority of synaptic GABAAR subtypes are assembled from α1-3, β, and γ2 subunits, our understanding of how neurons facilitate their targeting to and stabilization at inhibitory synapses is rudimentary. To address these issues, we have created knock-in mice in which the pH-sensitive green fluorescent protein (GFP) and the Myc epitope were introduced to the extracellular domain of the mature receptor α2 subunit (pHα2).

View Article and Find Full Text PDF

The zinc-activated channel (ZAC) is a cationic ion channel belonging to the superfamily of Cys-loop receptors, which consists of pentameric ligand-gated ion channels. ZAC is the least understood member of this family so in the present study we sought to characterize the properties of this channel further. We demonstrate that not only zinc (Zn(2+)) but also copper (Cu(2+)) and protons (H(+)) are agonists of ZAC, displaying potencies and efficacies in the rank orders of H(+)>Cu(2+)>Zn(2+) and H(+)>Zn(2+)>Cu(2+), respectively.

View Article and Find Full Text PDF

GABA(A) receptors form Cl(-) permeable channels that mediate the majority of fast synaptic inhibition in the brain. The K(+)/Cl(-) cotransporter KCC2 is the main mechanism by which neurons establish low intracellular Cl(-) levels, which is thought to enable GABAergic inhibitory control of neuronal activity. However, the widely used KCC2 inhibitor furosemide is nonselective with antiseizure efficacy in slices and in vivo, leading to a conflicting scheme of how KCC2 influences GABAergic control of neuronal synchronization.

View Article and Find Full Text PDF

The K(+)/Cl(-) cotransporter (KCC2) allows adult neurons to maintain low intracellular Cl(-) levels, which are a prerequisite for efficient synaptic inhibition upon activation of γ-aminobutyric acid receptors. Deficits in KCC2 activity are implicated in epileptogenesis, but how increased neuronal activity leads to transporter inactivation is ill defined. In vitro, the activity of KCC2 is potentiated via phosphorylation of serine 940 (S940).

View Article and Find Full Text PDF

γ-Aminobutyric acid type A receptors (GABAARs) are the principal mediators of fast synaptic inhibition in the brain as well as the low persistent extrasynaptic inhibition, both of which are fundamental to proper brain function. Thus unsurprisingly, deficits in GABAARs are implicated in a number of neurological disorders and diseases. The complexity of GABAAR regulation is determined not only by the heterogeneity of these receptors but also by its posttranslational modifications, the foremost, and best characterized of which is phosphorylation.

View Article and Find Full Text PDF