Unlabelled: Prostate cancer is the second leading cause of noncutaneous cancer-related deaths in American men. Androgen deprivation therapy (ADT), radical prostatectomy, and radiotherapy remain the primary treatment for patients with early-stage prostate cancer (castration-sensitive prostate cancer). Following ADT, many patients ultimately develop metastatic castration-resistant prostate cancer (mCRPC).
View Article and Find Full Text PDFMaximum tolerable dosing (MTD) of chemotherapeutics has long been the gold standard for aggressive malignancies. Recently, alternative dosing strategies have gained traction for their improved toxicity profiles and unique mechanisms of action, such as inhibition of angiogenesis and stimulation of immunity. In this article, we investigated whether extended exposure (EE) topotecan could improve long-term drug sensitivity by preventing drug resistance.
View Article and Find Full Text PDFMetastatic prostate cancer/PCa is the second leading cause of cancer deaths in US men. Most early-stage PCa are dependent on overexpression of the androgen receptor (AR) and, therefore, androgen deprivation therapies/ADT-sensitive. However, eventual resistance to standard medical castration (AR-inhibitors) and secondary chemotherapies (taxanes) is nearly universal.
View Article and Find Full Text PDFConventional treatment with taxanes (docetaxel-DTX or cabazitaxel-CBZ) increases the survival rates of patients with aggressive metastatic castration-resistant prostate cancer (mCRPC); however, most patients acquire resistance to taxanes. The andrographolide analog, 19--butyldiphenylsilyl-8,7-epoxy andrographolide (3A.1), has shown anticancer activity against various cancers.
View Article and Find Full Text PDFRepetitive, low-dose (metronomic; METRO) drug administration of some anticancer agents can overcome drug resistance and increase drug efficacy in many cancers, but the mechanisms are not understood fully. Previously, we showed that METRO dosing of topotecan (TOPO) is more effective than conventional (CONV) dosing in aggressive human prostate cancer (PCa) cell lines and in mouse tumor xenograft models. To gain mechanistic insights into METRO-TOPO activity, in this study we determined the effect of METRO- and CONV-TOPO treatment in a panel of human PCa cell lines representing castration-sensitive/resistant, androgen receptor (+/-), and those of different ethnicity on cell growth and gene expression.
View Article and Find Full Text PDFBackground: Triptolide is a therapeutic diterpenoid derived from the Chinese herb Tripterygium wilfordii Hook f. Triptolide has been shown to induce apoptosis by activation of pro-apoptotic proteins, inhibiting NFkB and c-KIT pathways, suppressing the Jak2 transcription, activating MAPK8/JNK signaling and modulating the heat shock responses.
Results: In the present study, we used lymphoblast cell lines (LCLs) derived from 55 unrelated Caucasian subjects to identify genetic markers predictive of cellular sensitivity to triptolide using genome wide association study.