Periods of large igneous province (LIP) magmatism have shaped Earth's biological and climatic history, causing major climatic shifts and biological reorganizations. The vegetation response to LIP-induced perturbations may affect the efficiency of the carbon-climate regulation system and the post-LIP climate evolution. Using an eco-evolutionary vegetation model, we demonstrate here that the vegetation's climate adaptation capacity, through biological evolution and geographic dispersal, is a major determinant of the severity and longevity of LIP-induced hyperthermals and can promote the emergence of a new climatic steady state.
View Article and Find Full Text PDFWithin the uncertainties of involved astronomical and biological parameters, the Drake Equation typically predicts that there should be many exoplanets in our galaxy hosting active, communicative civilizations (ACCs). These optimistic calculations are however not supported by evidence, which is often referred to as the Fermi Paradox. Here, we elaborate on this long-standing enigma by showing the importance of planetary tectonic style for biological evolution.
View Article and Find Full Text PDFEarth's long-term climate is driven by the cycling of carbon between geologic reservoirs and the atmosphere-ocean system. Our understanding of carbon-climate regulation remains incomplete, with large discrepancies remaining between biogeochemical model predictions and the geologic record. Here, we evaluate the importance of the continuous biological climate adaptation of vegetation as a regulation mechanism in the geologic carbon cycle since the establishment of forest ecosystems.
View Article and Find Full Text PDFUnderstanding the conditions for forming new subduction zones at passive continental margins is important for understanding plate tectonics and the Wilson cycle. Previous models of subduction initiation (SI) at passive margins generally ignore effects due to the lateral transition from oceanic to continental lithosphere. Here, we use three-dimensional numerical models to study the possibility of propagating convergent plate margins from preexisting intraoceanic subduction zones along passive margins [subduction propagation (SP)].
View Article and Find Full Text PDFThe formation of the Tibetan plateau during the India-Asia collision remains an outstanding issue. Proposed models mostly focus on the different styles of Tibetan crustal deformation, yet these do not readily explain the observed variation of deformation and deep structures along the collisional zone. Here we use three-dimensional numerical models to evaluate the effects of crustal rheology on the formation of the Himalayan-Tibetan orogenic system.
View Article and Find Full Text PDF