Publications by authors named "Taras Patsahan"

A robust method of hazardous metal ion removal from an aqueous environment involves the use of chelating agents, such as ethylenediaminetetraacetic acid (EDTA). Here, we focus on mercury (Hg) uptake by EDTA using both molecular dynamics and density functional theory simulations. Our results indicate that the deprotonation of the EDTA carboxylate groups improves the localization of negative charge on the deprotonated sites.

View Article and Find Full Text PDF

Correction for 'Phase behavior of patchy colloids confined in patchy porous media' by Yurij V. Kalyuzhnyi , , 2024, , 4668-4677, https://doi.org/10.

View Article and Find Full Text PDF

The precise prediction of major histocompatibility complex (MHC)-peptide complex structures is pivotal for understanding cellular immune responses and advancing vaccine design. In this study, we enhanced AlphaFold's capabilities by fine-tuning it with a specialized dataset consisting of exclusively high-resolution class I MHC-peptide crystal structures. This tailored approach aimed to address the generalist nature of AlphaFold's original training, which, while broad-ranging, lacked the granularity necessary for the high-precision demands of class I MHC-peptide interaction prediction.

View Article and Find Full Text PDF

A simple model for functionalized disordered porous media is proposed and the effects of confinement on self-association, percolation and phase behavior of a fluid of patchy particles are studied. The media are formed by randomly distributed hard-sphere obstacles fixed in space and decorated by a certain number of off-center square-well sites. The properties of the fluid of patchy particles, represented by the fluid of hard spheres each bearing a set of the off-center square-well sites, are studied using an appropriate combination of the scaled particle theory for the porous media, Wertheim's thermodynamic perturbation theory, and Flory-Stockmayer theory.

View Article and Find Full Text PDF

A facile route to biofouling-resistant porous thin-film membranes that can be fine-tuned for specific needs in diverse bioseparation, mass flow control, sensors, and drug delivery applications is reported. The proposed approach is based on combining two distinct macromolecular systems-a cross-linked poly(2-vinyl pyridine) network and a 3D-grafted polyethylene oxide (PEO) layer-in one robust porous material whose porosity can be adjusted within a wide range, covering the macroporous and mesoporous size regimes. Notably, this reconfigurable material maintains its antifouling properties throughout the entire range of pore size configurations because of a dense surface carpet of PEO chains with self-healing properties that are immobilized both onto the surface and inside the polymer network through what was termed 3D grafting.

View Article and Find Full Text PDF

Using dissipative particle dynamics, we investigate the behavior of a binary mixture, exhibiting demixing in a bulk phase, confined in slit-like pores with walls modified by the stripes of tethered brush of chains. Our main interest is to determine possible morphologies that can be formed inside the pore, depending on the geometrical parameters characterizing the system (the size of the pore and the width of the stripes). In order to describe the observed morphologies we calculate several characteristics, as the density and local temperature profiles, the radii of gyration for the attached polymers, and the minimum polymer-polymer distances in the direction parallel and perpendicular to the pore walls.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: