We used marker-free technologies to study chromatin at cellular resolution. Our results show asymmetric chromatin distribution, explore chromatin dynamics during mitosis, and reveal structural differences between trichoblast and atrichoblast cell. The shapes, sizes, and structural organizations of plant nuclei vary considerably among cell types, tissues, and species.
View Article and Find Full Text PDFPrecise knowledge of all aspects controlling plant tissue culture and in vitro plant regeneration is crucial for plant biotechnologists and their correlated industry, as there is increasing demand for this scientific knowledge, resulting in more productive and resilient plants in the field. However, the development and application of cell and tissue culture techniques are usually based on empirical studies, although some data-driven models are available. Overall, the success of plant tissue culture is dependent on several factors such as available nutrients, endogenous auxin synthesis, organic compounds, and environment conditions.
View Article and Find Full Text PDFRoot development is regulated by sucrose and light during early seedling establishment through changes in the auxin response and chromatin topology. Light is a key environmental signal that regulates plant growth and development. The impact of light on development is primarily analyzed in the above-ground tissues, but little is known about the mechanisms by which light shapes the architecture of underground roots.
View Article and Find Full Text PDFCultivated tomato ( L.) is one of the most important horticultural crops in the world. The optimization of culture media for callus formation and tissue regeneration of different tomato genotypes presents numerous biotechnological applications.
View Article and Find Full Text PDFAn environmentally responsive root system is crucial for plant growth and crop yield, especially in suboptimal soil conditions. This responsiveness enables the plant to exploit regions of high nutrient density while simultaneously minimizing abiotic stress. Despite the vital importance of root systems in regulating plant growth, significant gaps of knowledge exist in the mechanisms that regulate their architecture.
View Article and Find Full Text PDFReactive oxygen species (ROS) play a dual role in plant biology, acting as important signal transduction molecules and as toxic byproducts of aerobic metabolism that accumulate in cells upon exposure to different stressors and lead to cell death. In plants, root architecture is regulated by the distribution and intercellular flow of the phytohormone auxin. In this study, we identified ROS as an important modulator of auxin distribution and response in the root.
View Article and Find Full Text PDFRemoval of the root system induces the formation of new roots from the remaining shoot. This process is primarily controlled by the phytohormone auxin, which interacts with other signals in a yet unresolved manner. Here, we study the classical tomato mutation rosette (ro), which lacks shoot-borne roots.
View Article and Find Full Text PDFRoot system architecture ultimately depends on precise signaling between different cells and tissues in the root apical meristem (RAM) and integration with environmental cues. This study describes a simple pipeline to simultaneously determine cellular parameters, nucleus geometry, and cell cycle kinetics in the RAM. The method uses marker-free techniques for nucleus and cell boundary detection, and 5-ethynyl-2'-deoxyuridine (EdU) staining for DNA replication quantification.
View Article and Find Full Text PDFC4 photosynthesis increases the efficiency of carbon fixation by spatially separating high concentrations of molecular oxygen from Rubisco. The specialized leaf anatomy required for this separation evolved independently many times. The morphology of C4 root systems is also distinctive and adapted to support high rates of photosynthesis; however, little is known about the molecular mechanisms that have driven the evolution of C4 root system architecture.
View Article and Find Full Text PDFWhen dealing with plant roots, a multiscale description of the functional root structure is needed. Since the beginning of 21st century, new devices such as laser confocal microscopes have been accessible for coarse root structure measurements, including three-dimensional (3D) reconstruction. Most researchers are familiar with using simple 2D geometry visualization that does not allow quantitative determination of key morphological features from an organ-like perspective.
View Article and Find Full Text PDFPlants (Basel)
February 2021
Procedures for the direct regeneration of entire plants from a shoot and root protoplasts of have been optimized. The culture media for protoplast donor-plant cultivation and protoplast culture have been adjusted for optimal plant growth, plating efficiency, and promotion of shoot regeneration. Protocols have been established for the detection of all three steps in plant regeneration: (i) chromatin relaxation and activation of auxin biosynthesis, (ii) cell cycle progression, and (iii) conversion of cell-cycle active cells to totipotent ones.
View Article and Find Full Text PDFRoot development is regulated by the tripeptide glutathione (GSH), a strong non-enzymatic antioxidant found in plants but with a poorly understood function in roots. Here, Arabidopsis mutants deficient in GSH biosynthesis (, , and ) and plants treated with the GSH biosynthesis inhibitor buthionine sulfoximine (BSO) showed root growth inhibition, significant alterations in the root apical meristem (RAM) structure (length and cell division), and defects in lateral root formation. Investigation of the molecular mechanisms of GSH action showed that GSH deficiency modulated total ubiquitination of proteins and inhibited the auxin-related, ubiquitination-dependent degradation of Aux/IAA proteins and the transcriptional activation of early auxin-responsive genes.
View Article and Find Full Text PDFRoot stem cell niche functioning requires the formation and maintenance of the specific "auxin-rich domain" governed by directional auxin transport and local auxin production. Auxin maximum co-localizes with the WOX5 expression domain in the quiescent center that separates mitotically active proximal and distal root meristems. Here we unravel the interconnected processes happening under WOX5 overexpression by combining experiments and mathematical modeling.
View Article and Find Full Text PDFThe transport of auxin controls the rate, direction and localization of plant growth and development. The course of auxin transport is defined by the polar subcellular localization of the PIN proteins, a family of auxin efflux transporters. However, little is known about the composition and regulation of the PIN protein complex.
View Article and Find Full Text PDFPlants are sessile organisms that have a remarkable developmental plasticity, which ensures their optimal adaptation to environmental stresses. Plant cell totipotency is an extreme example of such plasticity, whereby somatic cells have the potential to form plants via direct shoot organogenesis or somatic embryogenesis in response to various exogenous and/or endogenous signals. Protoplasts provide one of the most suitable systems for investigating molecular mechanisms of totipotency, because they are effectively single cell populations.
View Article and Find Full Text PDFThe protocol allows to define and characterize mitosis distribution patterns in the plant root meristem. The method does not require genetic markers, which makes it applicable to plants of different non-transgenic genotypes, including ecotypes, mutants, and non-model plant species. Computer analysis of the mitosis distribution in three dimensions with iRoCS Toolbox identifies statistically significant changes in proliferation activity within specific root tissues and cell lineages.
View Article and Find Full Text PDFThe phytohormone salicylic acid (SA) is well known for its induction of pathogenesis-related proteins and systemic acquired resistance; SA also has specific effects on plant growth and development. Here we analyzed the effect of SA on Arabidopsis () root development. We show that exogenous SA treatment at low (below 50 µM) and high (greater than 50 µM) concentrations affect root meristem development in two different PR1-independent ways.
View Article and Find Full Text PDFThe ancient morphoregulatory hormone auxin dynamically realigns dedicated cellular processes that shape plant growth under prevailing environmental conditions. However, the nature of the stress-responsive signal altering auxin homeostasis remains elusive. Here we establish that the evolutionarily conserved plastidial retrograde signaling metabolite methylerythritol cyclodiphosphate (MEcPP) controls adaptive growth by dual transcriptional and post-translational regulatory inputs that modulate auxin levels and distribution patterns in response to stress.
View Article and Find Full Text PDFIn plants as well as other organisms, protein localization alone is insufficient to provide a mechanistic link between stimulus and process regulation. This is because protein-protein interactions are central to the regulation of biological processes. However, they remain very difficult to detect in situ, with the choice of tools for the detection of protein-protein interaction in situ still in need of expansion.
View Article and Find Full Text PDFThe Calcium-Dependent Protein Kinase (CDPK)-Related Kinase family (CRKs) consists of eight members in . Recently, At was shown to play a direct role in the regulation of root gravitropic response involving polar auxin transport (PAT). However, limited information is available about the function of the other At genes.
View Article and Find Full Text PDFTo date CYCB1;1 marker and cortex cell lengths have been conventionally used to determine the proliferation activity of the Arabidopsis root meristem. By creating a 3D map of mitosis distribution we showed that these markers overlooked that stele and endodermis save their potency to divide longer than the cortex and epidermis. Cessation of cell divisions is not a random process, so that mitotic activity within the endodermis and stele shows a diarch pattern.
View Article and Find Full Text PDFUsing the intrinsic Root Coordinate System (iRoCS) Toolbox, a digital atlas at cellular resolution has been constructed for Nicotiana tabacum roots. Mitotic cells and cells labeled for DNA replication with 5-ethynyl-2'-deoxyuridine (EdU) were mapped. The results demonstrate that iRoCS analysis can be applied to roots that are thicker than those of Arabidopsis thaliana without histological sectioning.
View Article and Find Full Text PDFRapid advances in microscopy have boosted research on cell biology. However sample preparation enabling excellent reproducible tissue preservation and cell labeling for in depth microscopic analysis of inner cell layers, tissues and organs still represents a major challenge for immunolocalization studies. Here we describe a protocol for whole-mount immunolocalization of proteins which is applicable to a wide range of plant species.
View Article and Find Full Text PDF