Publications by authors named "Taran N"

Diagnosis of dyslexia often occurs in late schooling years, leading to academic and psychological challenges. Furthermore, diagnosis is time-consuming, costly, and reliant on arbitrary cutoffs. On the other hand, automated algorithms hold great potential in medical and psychological diagnostics.

View Article and Find Full Text PDF

The aim of this study was to determine the effect of a computerized executive functions (EFs)-based reading intervention on neural circuits supporting EFs and visual attention. Seed-to-voxel functional connectivity analysis was conducted focusing on large-scale attention system brain networks, during an fMRI reading fluency task. Participants were 8- to 12-year-old English-speaking children with dyslexia ( = 43) and typical readers ( = 36) trained on an EFs-based reading training ( = 40) versus math training ( = 39).

View Article and Find Full Text PDF

The asynchrony theory of dyslexia postulates weaker visual (orthographical processing) and auditory (phonological processing) network synchrony in dyslexic readers. The weaker visual-auditory network synchronization is suggested to contribute to slow processing speed, which supports cognitive control, contributing to single-word reading difficulty and lower reading fluency. The current study aims to determine the neurobiological signature for this theory and to examine if prompting enhanced reading speed through deleted text is associated with a greater synchronization of functional connectivity of the visual and auditory networks in children with dyslexia and typical readers (TRs).

View Article and Find Full Text PDF

Alagille syndrome (ALGS) is a multisystem condition characterized by cholestasis and bile duct paucity on liver biopsy and variable involvement of the heart, skeleton, eyes, kidneys, and face and caused by pathogenic variants in the or gene. The variable expressivity of the clinical phenotype and the lack of genotype-phenotype correlations lead to significant diagnostic difficulties. Here we present an analysis of 18 patients with cholestasis who were diagnosed with ALGS.

View Article and Find Full Text PDF

The congenital disorder of glycosylation type IIs (ATP6AP1-CDG; OMIM# 300972) is a rare X-linked recessive complex syndrome characterized by liver dysfunction, recurrent bacterial infections, hypogammaglobulinemia, and defective glycosylation of serum proteins. Here, we examine the case of a 1-year-old male patient of Buryat origin, who presented with liver dysfunction. At the age of 3 months, he was hospitalized with jaundice and hepatosplenomegaly.

View Article and Find Full Text PDF

Metallic nanoparticles of different compositions have already found numerous applications in various branches of industry, agriculture, and medicine. Given the well-known antibacterial activity of Ag, silver nanoparticles (AgNPs) are constantly being investigated for their promising ability to fight antibiotic-resistant pathogens. A promising candidate for AgNPs biosynthesis is chili pepper Capsicum annuum, cultivated worldwide and known for accumulating significant amounts of active substances.

View Article and Find Full Text PDF
Article Synopsis
  • Hyperammonemia caused by carbonic anhydrase VA deficiency is a rare but severe genetic disorder linked to mutations in the CA5A gene, often resulting in unexplained hyperammonemia in newborns and infants.
  • A case study details a 5-year-old patient with a specific mutation in the CA5A gene, previously identified in a Russian boy, highlighting its occurrence in that population.
  • The study suggests that targeted genetic testing for this mutation should be implemented in neonatal intensive care units to allow for early diagnosis and intervention.
View Article and Find Full Text PDF

Background: Hypertriglyceridemia (HTG) is one of the most common forms of lipid metabolism disorders. The leading clinical manifestations are pancreatitis, atherosclerotic vascular lesions, and the formation of eruptive xanthomas. The most severe type of HTG is primary (or hereditary) hypertriglyceridemia, linked to pathogenic genetic variants in LPL, APOC2, LMF1, and APOA5 genes.

View Article and Find Full Text PDF

Poor phonological processing has typically been considered the main cause of dyslexia. However, visuo-attentional processing abnormalities have been described as well. The goal of the present study was to determine the involvement of visual attention during fluent reading in children with dyslexia and typical readers.

View Article and Find Full Text PDF

Background: Peroxisome biogenesis disorders (PBD) are a heterogeneous group of autosomal recessive disorders that affect multiple organ systems. Approximately 80% of PBD patients are classifiedin the Zellweger syndrome spectrum, which is generally caused by mutations in the , or genes.

Methods: We present the clinical characteristics of three male members with cholestatic hepatopathy and developmental delay.

View Article and Find Full Text PDF

Diagnosis and treatment of orphan (rare) diseases is an important problem of modern pediatrics due to multivarious clinical signs and severe course of this pathology. Orphan diseases are associated with accumulation, absence or insufficient synthesis of one or several metabolites in the organism. The absence of early diagnostics and treatment of patients with such diseases leads to bad prognosis.

View Article and Find Full Text PDF

Germline mutations in CACNA1D cause the primary aldosteronism, seizures, and neurologic abnormalities (PASNA) syndrome (OMIM# 615474) characterized by primary aldosteronism, seizures and neurological abnormalities. The authors present a case-report of a 1-year 3-month male patient with neurological symptoms such as seizures and global developmental delay with primary hyperaldosteronism. The heterozygosis disease-causing variant c.

View Article and Find Full Text PDF

Ever since the first liver transplant in the Republic of Moldova in 2013 we have performed 30 liver transplantations, the first having been performed in collaboration with the surgical team from Romania, led by Professor Irinel Popescu. The serious deficit of available cadaveric organs has forced us to begin with right hemi-liver transplantation from a living donor. In one third of liver transplantations we used right hemi-liver graft from a living donor, and in 2/3 of cases whole liver graft was harvested from brain-dead donors.

View Article and Find Full Text PDF

The effect of a colloidal solution of Cu,Zn-nanoparticles on pro-oxidative/antioxidative balance and content of photosynthetic pigments and leaf area of winter wheat plants of steppe (Acveduc) and forest-steppe (Stolichna) ecotypes was investigated in drought conditions. It has been shown that Cu,Zn-nanoparticles decreased the negative effect of drought action upon plants of steppe ecotype Acveduc. In particular, increased activity of antioxidative enzymes reduced the level of accumulation of thiobarbituric acid reactive substances (TBARS) and stabilized the content of photosynthetic pigments and increased relative water content in leaves.

View Article and Find Full Text PDF

Results of fluorescence microscopic research and quantitative luminescent analysis of pathogen induced callose accumulation in winter wheat seedlings of two cultivars different in resistance to eye spot causal agent are presented. Higher content of constitutive callose in intact seedlings of unsusceptible cultivar at the initial stages of vegetation was determined. It correlates with resistance of this cultivar to the eye spot causal agent.

View Article and Find Full Text PDF

The use of colloidal solutions of metals as micronutrients enhances plant resistance to unfavorable environmental conditions and ensures high yields of food crops. The purpose of the study was a comparative evaluation of presowing treatment with nanomolybdenum and microbiological preparation impact upon the development of adaptive responses in chickpea plants. Oxidative processes did not develop in all variants of the experiment but in variants treated with microbial preparation, and joint action of microbial and nanopreparations even declined, as evidenced by the reduction of thiobarbituric acid reactive substances in photosynthetic tissues by 15 %.

View Article and Find Full Text PDF

Context: The role of hypericin-mediated photodynamic antimicrobial properties on pathogenic fungi and photodynamic therapy for human cancer cells is known. Antifungal properties of Hypericum perforatum L. (Hypericaceae) and Fagopyrum esculentum Moench.

View Article and Find Full Text PDF

The paper covers the research of copper and zinc nanoparticle effect on the content of ascorbic acid, and quantitative and qualitative composition of amino acids and acylcarnitines in Pistia stratiotes L. plants. Plant exposition to copper nanoparticles led to the decrease in (1) the amount of ascorbic acid, (2) the total content of amino acids (by 25 %), and (3) the amount of all studied amino acids except for the glycine amino acid.

View Article and Find Full Text PDF

Buckwheat genus (Fagopyrum Mill.) is one of the aluminium tolerant taxonomic units of plants. The aim of the study was an evaluation of the aluminium (50 μM effect on phenolic accumulation in various parts of buckwheat plants (Fagopyrum esculentum Moench).

View Article and Find Full Text PDF

The paper presents research data of lipid peroxidation and lectin activity in wheat seedlings at seed treatment with solution of metal nanoparticles (Zn, Ag, Fe, Mn, Cu) and sole solution of copper nanoparticles under the high pathogen infection background of Pseudocercosporella herpotrichoides (Fron) Deighton (synonym: Oculimacula yallundae (Wallwork & Sponer) Crous & W. Gams). It was shown that investigated nonionic colloidal solutions of biogenic metals have the antioxidant effect through the inhibition of the synthesis of lipid peroxidation products.

View Article and Find Full Text PDF

Nanoparticles are a known cause of oxidative stress and so induce antistress action. The latter property was the purpose of our study. The effect of two concentrations (120 and 240 mg/l) of nanoform biogenic metal (Ag, Cu, Fe, Zn, Mn) colloidal solution on antioxidant enzymes, superoxide dismutase and catalase; the level of the factor of the antioxidant state; and the content of thiobarbituric acid reactive substances (TBARSs) of soybean plant in terms of field experience were studied.

View Article and Find Full Text PDF

In endometriosis, the increased survival potential of shed endometrial cells (which normally undergo anoikis) is suggested to promote lesion development. One mechanism that may alter anoikis is autophagy. Using an autophagic flux inhibitor hydroxychloroquine (HCQ), we identified that it reduces the in vitro survival capacity of human endometriotic and endometrial T-HESC cells.

View Article and Find Full Text PDF

Seed inoculation with bacterial consortium was found to increase legume yield, providing a higher growth than the standard nitrogen treatment methods. Alfalfa plants were inoculated by mono- and binary compositions of nitrogen-fixing microorganisms. Their physiological and biochemical properties were estimated.

View Article and Find Full Text PDF

The role of iron in the development of cancer remains unclear. We previously reported that iron reduces cell survival in a Ras/mitogen-activated protein kinase (MAPK)-dependent manner in ovarian cells; however, the underlying downstream pathway leading to reduced survival was unclear. Although levels of intracellular iron, ferritin/CD71 protein and reactive oxygen species did not correlate with iron-induced cell survival changes, we identified mitochondrial damage (via TEM) and reduced expression of outer mitochondrial membrane proteins (translocase of outer membrane: TOM20 and TOM70) in cell lines sensitive to iron.

View Article and Find Full Text PDF

The content of metal elements in plant tissues of 10-day wheat seedlings after seed pre-treatment and foliar treatment with non-ionic colloidal solution of metal nanoparticles (Fe, Mn, Cu, Zn) was determined by an atomic absorption spectrometer. It was shown that metal nanoparticles due to their physical properties (nanoscale and uncharged state) were capable of penetrating rapidly into plant cells and optimizing plant metabolic processes at the early stages of growth and development.

View Article and Find Full Text PDF